

1

DDVH

COURSE FILE

2

 GEETHANJALI COLLEGE OF ENGINEERING AND

TECHNOLOGY

DEPARTMENT OF Electronics and communications Engineering

(Name of the Subject / Lab Course) : Digital Design Using Verilog HDL

(JNTU CODE) : A40410 Programme : UG

Branch: ECE Version No : 01

Year: II Updated on : 17/11/2015

Semester: II No. of pages :

Classification status (Unrestricted / Restricted)

Distribution List :

Prepared by :1) Name : B Sreelatha 1) Name : T Rama Krishna

 2) Sign : 2) Sign :

3) Design : Assoc. professor 3) Design : Assoc. professor

4) Date : 17/11/2015 4) Date : 17/11/2015

Verified by : 1) Name :

 2) Sign :

 3) Design :

 4) Date :

* For Q.C Only.1) Name :

2) Sign :

3) Design :

4) Date :

Approved by : (HOD) 1) Name :

 2) Sign : 3) Date :

3

Contents required for course file

1. Cover page

2. Syllabus copy

3. Vision of the Department

4. Mission of the Department

5. PEOs and POs

6. Course objectives and outcomes

7. Brief importance of the course and how it fits into the curriculum

8. Prerequisites if any

9. Instructional Learning Outcomes

10. Course mapping with PEOs and POs

11. Class Time table

12. Individual Time table

13. Lecture schedule with methodology being used / adopted

14. Detailed notes

15. Additional topics

16. University previous Question papers of previous years

17. Question Bank

18. Assignment Questions

19. Unit-wise quiz questions and long answer questions

20. Tutorial Problems

21. Known curriculum Gaps (If any) and inclusion of the same in lecture schedule

22. Discussion topics, if any

23. References, Journals, websites and E-links if any

24. Quality measurement Sheets

a. Course end survey

b. Teaching Evaluation

25. Students List

26. Group-Wise students list for discussion topics

4

2. Syllabus copy

JAWAHARLAL NEHRU TECHNOLOGIVAL UNIVERSITY HYDERABAD

II Year B.Tech. ECE -II Sem L T/ P/ D C

 4 -/ - / - 4

Digital Design using Verilog HDL

UNIT I:

Introduction to Verilog HDL: Verilog as HDL, Levels of Design Description, Concurrency, Simulation

and Synthesis, Functional Verification, System Tasks, Programming Language Interface (PLI), Module,

Simulation and Synthesis Tools.

Language Constructs and Conventions: Introduction, Keywords, Identifiers, White Space Characters,

Comments, Numbers, Strings, Logic Values, Strengths, Data Types, Scalars and Vectors, Parameters,

Operators.

UNIT II:

Gate Level Modeling: Introduction, AND Gate Primitive, Module Structure, Other Gate Primitives,

Illustrative Examples, Tri-State Gates, Array of Instances of Primitives, Design of Flip-flops with Gate

Primitives, Delays, Strengths and Construction Resolution, Net Types, Design of Basic Circuits.

Modeling at Dataflow Level: Introduction, Continuous Assignment Structure, Delays and Continuous

Assignments, Assignment to Vectors, Operators.

UNIT III:

Behavioral Modeling: Introduction, Operations and Assignments, Functional Bifurcation, Initial

Construct, Always Construct, Assignments with Delays, Wait construct, Multiple Always Blocks,

Designs at Behavioral Level, Blocking and Non-Blocking Assignments, The case statement, Simulation

Flow iƒ and iƒ-else constructs, Assign-De-Assign construct, Repeat construct, for loop, the Disable

construct, While loop, Forever loop, Parallel Blocks, Force-Release construct, Event.

UNIT IV:

Switch Level Modeling: Basic Transistor Switches, CMOS Switch, Bi-directional Gates, Time Delays

with Switch Primitives, Instantiations with Strengths and Delays, Strength Contention with Trireg Nets,

Exercises.

System Tasks, Functions and Compiler Directives: Parameters, Path Delays, Module Parameters,

System Tasks and Functions, File-Based Tasks and Functions, Computer Directives, Hierarchical Access,

User Defined Primitives.

UNIT V:

Sequential Circuit Description: Sequential Models – Feedback Model, Capacitive Model, Implicit Model, Basic

Memory Components, Functional Register, Static Machine Coding, Sequential Synthesis.

Components Test and Verification: Test Bench- Combinational Circuit Testing, Sequential Circuit Testing, Test

Bench Techniques, Design Verification, Assertion Verification.

TEXT BOOKS:

5

1. T.R. Padmanabhan, B. Bala Tripura Sundari , Design through Verilog HDL –, Wiley, 2009.

2. Zainalabdien Navabi, Verilog Digital System Design, TMH, 2nd Edition.

 REFERENCE BOOKS:

1. Fundamentals of Logic Design with Verilog Design– Stephen. Brown and Zvonko Vranesic, TMH, 2nd Edition

2010.

2. Advanced Digital Logic Design using Verilog, State Machine & Synthesis for FPGA – Sunggu Lee, Cengage

Learning , 2012.

3. Verilog HDL – Samir Palnitkar, 2nd Edition, Pearson Education, 2009.

4. Advanced Digital Design with Verilog HDL – Michael D. Ciletti, PHI, 2009.

3. Vision of the Department

To impart quality technical education in Electronics and Communication Engineering emphasizing

analysis, design/synthesis and evaluation of hardware/embedded software using various Electronic

Design Automation (EDA) tools with accent on creativity, innovation and research thereby producing

competent engineers who can meet global challenges with societal commitment.

4. Mission of the Department

i. To impart quality education in fundamentals of basic sciences, mathematics, electronics and

communication engineering through innovative teaching-learning processes.

ii. To facilitate Graduates define, design, and solve engineering problems in the field of Electronics and

Communication Engineering using various Electronic Design Automation (EDA) tools.

iii. To encourage research culture among faculty and students thereby facilitating them to be creative and

innovative through constant interaction with R & D organizations and Industry.

iv. To inculcate teamwork, imbibe leadership qualities, professional ethics and social responsibilities in

students and faculty.

6

5. PEOs and POs

Program Educational Objectives (PEOs):

I. To prepare students with excellent comprehension of basic sciences, mathematics and engineering

subjects facilitating them to gain employment or pursue postgraduate studies with an appreciation

for lifelong learning.

II. To train students with problem solving capabilities such as analysis and design with adequate

practical skills wherein they demonstrate creativity and innovation that would enable them to

develop state of the art equipment and technologies of multidisciplinary nature for societal

development.

III. To inculcate positive attitude, professional ethics, effective communication and interpersonal

skills which would facilitate them to succeed in the chosen profession exhibiting creativity and

innovation through research and development both as team member and as well as leader.

Program Outcomes (POs):

1. An ability to apply knowledge of Mathematics, Science, and Engineering to solve complex

engineering problems of Electronics and Communication Engineering systems.

2. An ability to model, simulate and design Electronics and Communication Engineering systems,

conduct experiments, as well as analyze and interpret data and prepare a report with conclusions.

3. An ability to design an Electronics and Communication Engineering system, component, or

process to meet desired needs within the realistic constraints such as economic, environmental,

social, political, ethical, health and safety, manufacturability and sustainability.

4. An ability to function on multidisciplinary teams involving interpersonal skills.

5. An ability to identify, formulate and solve engineering problems of multidisciplinary nature.

6. An understanding of professional and ethical responsibilities involved in the practice of

Electronics and Communication Engineering profession.

7. An ability to communicate effectively with a range of audience on complex engineering problems

of multidisciplinary nature both in oral and written form.

8. The broad education necessary to understand the impact of engineering solutions in a global,

economic, environmental and societal context.

9. A recognition of the need for, and an ability to engage in life-long learning and acquire the

capability for the same.

7

10. A knowledge of contemporary issues involved in the practice of Electronics and Communication

Engineering profession

11. An ability to use the techniques, skills and modern engineering tools necessary for engineering

practice.

12. An ability to use modern Electronic Design Automation (EDA) tools, software and electronic

equipment to analyze, synthesize and evaluate Electronics and Communication Engineering

systems for multidisciplinary tasks.

13. Apply engineering and project management principles to one's own work and also to manage

projects of multidisciplinary nature.

6. Course Objectives and Outcomes

Course Objectives (as per JNTU-H)

This course teaches:

 Designing digital circuits, behavioral and RTL modeling of digital circuits using Verilog HDL.

 Verifying these models and synthesizing RTL models to standard cell libraries and FPGAs.

 Students gain practical experience by designing, modeling, implementing and verifying several

digital circuits.

This course aims to provide students with the understanding of the different technologies related to

HDLs, construct, compile and execute Verilog HDL programs using provided software tools. Design

digital components and circuits that are testable, reusable and synthesizable.

Course Outcomes

After the completion of the course, the student would be able to

CO 1: Describe Verilog hardware description languages (HDL).

CO 2: Design Digital Circuits.

CO 3: Write behavioral models of digital circuits.

CO 4: Write Register Transfer Level (RTL) models of digital circuits.

CO 5: Verify behavioral and RTL models.

CO 6: Describe standard cell libraries and FPGAs.

CO 7: Synthesize RTL models to standard cell libraries and FPGAs.

CO 8: Implement RTL models on FPGAs and Testing & Verification.

7. Brief Importance of the Course and how it fits into the curriculum

a. This is the basic fundamental subject for the programming of the digital Electronics.

b. This subject is required to understand the programming od the combinational and sequential circuit

designs.

b. By studying this subject, the students can design and understand digital systems and its importance.

8

c. The students logical thinking capability will be improved which will help in placements and in their

future technical assignments.

8. Prerequisites if any
1. Concepts of switching theory and logic design.

9. Instructional Learning Outcomes

Learning outcomes are the key abilities and knowledge that will be assessed

Unit – I:

Introduction to Verilog HDL

 Students understand the importance of HDL (Hardware Descriptive Language) and apply the

knowledge of Boolean algebra to design and development digital Systems.

 Understand the difference between concurrent and sequential programming

 Issues related to simulation and synthesis models.

Language Constructs and Conventions:

 Knowledge of language constructs

 Pertaining to Semantic and syntactical errors in programming using HDL

 Limitation of HDL

Unit- II:

Gate Level Modeling

 Student will learn conventional structural modeling of digital systems.

 Learn to model language defined primitive gates

 Understand importance component structure in Verilog.

 Learn Hierarchical digital system building

Modeling at Dataflow Level

 Continuous assignment operator based model construction will be learnt.

Unit – III:

Behavioral Modeling:

 Students will be familiarized to high level abstraction of digital systems with behavioral modeling

of systems.

 RTL modeling of digital systems

9

 Will be made familiar to behavioral constructs like ‘always’ ,’initial’, ‘if’, ‘if-else’, ‘case’..etc

 Register and array modeling

Unit – IV:

Switch Level Modeling:

 Students will learn low-level abstraction of digital systems.

 Switch level primitives will be learnt

 Made to familiarize to different strengths of logic values

System Tasks, Functions and Compiler Directives:

 Understand the importance of system tasks and functions

 Understand compiler directives.

 Understand user defined primitives and learn to model systems using UDP

 Learn the intricacies associated with usage of functions and tasks in packages

 Learn package declaration and package usage in project building

Unit – V:

Sequential Circuit Description:

 Learn to model Sequential circuits at higher level of abstraction using RTL modeling

 Will be able to design static and dynamic memories

 Will learn to model in behavioral style of binary encoding and one hot encoding

Component Test and Verification:

 Students understand Test bench generation

 Producing of test vectors to test the digital systems at higher level of abstraction.

10. Course mapping with PEOs and POs

Mapping of Course with Programme Educational Objectives:

S.No Course

component

code course Semester PEO 1 PEO 2 PEO 3

1
Digital

Electronics
 DDVH 2 √ √

Mapping of Course outcomes with Programme outcomes:

10

*When the course outcome weightage is < 40%, it will be given as moderately correlated (1).

*When the course outcome weightage is >40%, it will be given as strongly correlated (2).

POs 1 2 3 4 5 6 7 8 9 10 11 12 13

D
ig

it
a
l

S
y
st

em
s

DDVH

CO 1: Describe Verilog

hardware description

languages (HDL).

√ √ √ √ √ √ √

CO 2: Design Digital

Circuits.

 √ √ √ √ √ √

CO 3: Write

behavioral models of

digital circuits.

√ √ √ √ √ √ √

CO 4: Write Register

Transfer Level (RTL)

models of digital

circuits.

√ √ √ √ √ √ √

CO 5: Verify

behavioral and RTL

models.

√ √ √ √ √ √ √

CO 6: Describe

standard cell libraries

and FPGAs.

√ √ √ √ √ √ √

CO 7: Synthesize RTL

models to standard cell

libraries and FPGAs.

√ √ √ √ √ √ √

CO 8: Implement RTL

models on FPGAs and

Testing & Verification.

√ √ √ √ √ √ √

11. Time table of concerned class

12. Individual time table

11

13. Lecture schedule with methodology being used / adopted

SL.

NO

Unit

No.

Total

no. of

peroi

ds

Date Topics to be covered in one

lecture

Regula

r/

Additio

nal

Teaching

aids used

LCD/

OHP/ BB

Rema

rks

1 I 6 Verilog as HDL, Levels of

Design Description, Concurrency,

Verilog as HDL, Levels of

Design Description

Regular OHP,BB

2 Concurrency Simulation and

Synthesis, Functional

Verification, System Tasks,

Programming Language Interface

(PLI)

Regular OHP,BB

3 Module, Simulation and

Synthesis Tools

LANGUAGE CONSTRUCTS

AND CONVENTIONS

Introduction, Keywords

Regular OHP,BB

4 Identifiers, White Space

Characters, Comments, Numbers,

Strings, Logic Values, Strengths

Regular BB

5 Data Types, Scalars and Vectors,

Parameters, Memory, Operators,

System Tasks, Exercises.

Regular OHP,BB

6 Tutorial class-1 BB

7 II 11 Introduction, AND Gate

Primitive, Module Structure

Regular OHP,BB

8 Other Gate Primitives, Illustrative Regular OHP,BB

12

Examples, Tri-State Gates

9 Array of Instances of Primitives,

Additional Examples

Regular OHP,BB

10 Design of Flip-flops with Gate

Primitives, Delays, Strengths and

Contention Resolution

Regular BB

11 Net Types, Design of Basic

Circuits, Exercises.

Regular BB

12 Verilog designs for various

rounding methods

Additio

nal

OHP,BB

13 Introduction, Continuous

Assignment Structures, Delays

and Continuous Assignments

Regular OHP,BB

14 Assignment to Vectors,

Operators.

Regular OHP,BB

15 Tutorial class-2 BB

16 Solving University papers BB

17 Assignment test-1 BB

18 III 6 Introduction, Operations and

Assignments, Functional

Bifurcation, Initial Construct,

Always Construct, Examples

Regular OHP,BB

19 Assignments with Delays, Wait

construct, Multiple Always

Blocks, Designs at Behavioral

Level

Regular OHP,BB

20 Blocking and Non blocking

Assignments, The case statement,

Simulation Flow. iƒ and iƒ-else

constructs

Regular OHP,BB

13

21 assign-deassign construct, repeat

construct, for loop, the disable

construct

Regular OHP,BB

22 while loop, forever loop, parallel

blocks, force-release construct,

Event.

Regular BB

23 Tutorial class-3 BB

24 IV 12 SWITCH LEVEL MODELING.

Introduction Basic Transistor

Switches, CMOS Switch, Bi-

directional Gates

Regular OHP,BB

25 Time Delays with Switch

Primitives, Instantiations with

Strengths and Delays

Regular BB

26 .Strength Contention with Trireg

Nets, Exercises.

Regular BB

27 Combinational synthesis Additio

nal

OHP,BB

28 Tutorial calss-4 BB

29 Solving university papers BB

30 Assignment test-2

31 Mid test-1

32 Introduction, Parameters, Path

Delays, Module Parameters,

System Tasks and Functions

Regular OHP,BB

33 File-Based Tasks and Functions,

Compiler Directives, Hierarchical

Access,

Regular OHP,BB

34 User- Defined Primitives (UDP) Regular OHP,BB

35 Tutorial class-5 BB

14

36 V 11 Sequential Models – FeedBack

Model, Capacaitive Model,

Implicit Model

Regular OHP,BB

37 Basic Memory Components,

Functional Register

Regular OHP,BB

38 Static Machine Coding Regular OHP,BB

39 Sequential Synthesis Regular OHP,BB

40 Tutorial class – 6 BB

41 Component Test and Verification:

Test Bench – Combinational

Circuit Testing

Regular OHP,BB

42 Test Bench – Sequential Circuit

Testing

Regular OHP,BB

43 Test Bench Techniques Regular OHP,BB

44 Design Verification Regular OHP,BB

45 Assertion Verification Regular OHP,BB

46 Tutorial Class – 7 BB

47 Solving university papers BB

48 Assignment test-2

49 Mid test-2

14. Detailed Notes

UNIT 1

INTRODUCTION TO VERILOG

VERILOG AS HDL:

Verilog HDL is a hardware description language used to design and document electronic systems.

Verilog HDL allows designers to design at various levels of abstraction.

• Why use an HDL?

15

– Describe complex designs (millions of gates)

– Input to synthesis tools (synthesizable subset)

– Design exploration with simulation

• Why not use a general purpose language

– Support for structure and instantiation (objects?)

– Support for describing bit-level behavior

– Support for timing

– Support for concurrency

• Verilog vs. VHDL

– Verilog is relatively simple and close to C

– VHDL is complex and close to Ada

– Verilog has 60% of the world digital design market (larger share in

US)

• Verilog modeling range

– From gates to processor level

– We’ll focus on RTL (register transfer level)

LEVELS OF DESIGN DESCRIPTION:

For the design of a digital system using an automated design environment, the design flow begins with

specification of the design at various levels of abstraction and ends with generating net list for an

application specific integrated circuits (ASIC), layout for a custom IC, or a program for programmable

logic devices (PLD). Figure 1.1 shows steps involved in this design flow.

In the design entry phase, a design is specified as a mixture of behavioral Verilog code, instantiation of

Verilog modules, and bus and wire assignments. A design engineer is also responsible for generating test

benches. for his or her design for verification of the design and later for verifying the synthesis output.

Design verification can be done by simulation, assertion verification, formal verification, or a mix of all

three. After performing this design validation phase (this is called the pre synthesis verification), this

design is taken through the synthesis process to translate it into actual hardware of a target device. Here,

target device refers to the specific field programmable logic device (FPLD) that is being programmed, the

ASIC that is being manufactured by an outside source, or the custom IC that is being fabricated. After the

16

synthesis process and before the actual hardware is generated, another simulation, which is referred to as

posts synthesis simulation, is done. This simulation can take advantage of the same test bench generated

for the Verilog model of the system before it is synthesized. This way, the behavioral model of the design

and its hardware model are tested with the same data. The difference between pre- and posts synthesis

simulations is in the level of details obtained from each simulation.

CONCURRENCY:

It is desired that all the elements present in an electronic circuit must be active and function

simultaneously as their voltages and current may vary at the same instant. Even, there is a possibility to

change their logic state. Multiple activities that are distributed among various modules need to be run

concurrently. Hence simulators are designed to carry out concurrent simulation. Simulation done at

uniform time intervals obtains concurrency.

Like timing, concurrency is an essential feature of any language for description of hardware. When a

software programmer develops code for performing a certain task, he or she thinks of this task in a

sequential manner. The software developed this way will have a top down sequential flow. On the other

hand, when a hardware designer or modeler is to describe a hardware system, he or she thinks of this

hardware as interconnections of components. The functionality of the overall system is achieved by

concurrently active components communicating through their input and output ports.

The functionality of each component may be described by concurrent subcomponents or described by a

program in a sequential manner.

We refer to concurrency as the way the simulation of components or constructs appears to the user.

Obviously, Verilog is a language for which simulators have been developed on single-processor

platforms, and true concurrency in the execution of thousands of components cannot exist. Through the

use of concurrent constructs, timing of interconnecting signals, and order of simulation of constructs or

components, a Verilog simulator makes us (the users) think that such execution is being done

concurrently.

SIMULATION AND SYNTHESIS, tools:

Simulation for design validation is done before a design is synthesized. This simulation pass is also

referred to as behavioral, RT level, or pre synthesis simulation. At the RT level a design includes clock-

level timing but no gate and wire delays are included. Simulation at this level is accurate to the clock

level. Timing of RT-level simulation is at the clock level and does not usually consider hazards, glitches,

race conditions, setup and hold violations, and other detailed timing issues. The advantage of this

simulation is its speed compared with simulations at the gate or transistor levels.

Simulation of a design requires test data, and usually Verilog simulation environments provide various

methods for application of these data to the design being tested. Test data can be generated graphically

using waveform editors, or through a test bench. For simulating with a Verilog test bench, the test bench

17

instantiates the design under test, and as part of the code of the test bench it applies test data to the

instantiated circuit.

Synthesis is the process of automatic hardware generation from a design description that has an

unambiguous hardware correspondence. A Verilog description for synthesis cannot include signal and

gate level timing specifications, file handling, and other language constructs that do not translate to

sequential or combinational logic equations. Furthermore, Verilog descriptions for synthesis must follow

certain styles of coding for combinational and sequential circuits. These styles and their corresponding

Verilog constructs are defined under Verilog for RTL synthesis. In the design process, after a design is

successfully entered and its Pre synthesis simulation results have been verified by the designer, it must be

compiled to make it one step closer to an actual hardware on silicon. This design phase requires

specification of the hardware that the design is to be realized in.

For example, we have to specify a specific ASIC, or a field programmable gate array (FPGA) part as our

“target hardware.” When the target hardware is specified, technology files of that hardware (ASIC,

FPGA, or custom IC) with detailed timing and functional specification become available to the

compilation process. The compilation process, translates various parts of the design to an intermediate

format (analysis phase), links all parts together, generates the corresponding logic (synthesis phase),

places and routes components of the target hardware, and generates timing details.

FUNCTIONAL VERIFICATION:

Testing is done by two measurements namely:

1. Functional test

2. Timing test

It does both the measurements. Usually a test bench is provided for a design that is to be tested. Today’s

functional verification flow mainly contains following steps:

1.Generate the stimulus vectors.

2.Send the Stimulus to the DUT.

3. Monitor the response generated by the DUT.

4. Verify the response generated.

5. Generate report about the DUT performance.

6. Some kind of feedback to show the quality of test bench

SYSTEM TASKS:

For test bench generation, data input and output, timing check, simulation flow control, data conversion,

and memory initialization. Verilog provides a number of system tasks and functions categorized into ten

groups. The names of system tasks and functions begin with a dollar sign ($), followed by a task

18

specified. The name of the task or function usually contains characters and names that describe its

functionality.

Display tasks

Display tasks are used for outputting to the standard output device. The most basic display task is the

$display task, which writes its string argument to the display device. Other tasks include those for

monitoring and outputting variable values as they change (the $monitor group of tasks) and those for

displaying variables at a selected time (the $display tasks). Display tasks can display in binary,

hexadecimal, or octal formats. The character b, h, or o at the end of the task name specifies the data type

a task handles. For all display tasks, a generic task can be used to display data with specified formats and

data types.

File I/O tasks

File output tasks begin with a dollar sign followed by the letter f (for file) and then by the same task

names as those of the display tasks. These tasks perform the same functionalities as their display task

counterparts, except that their output is to a file instead of to the display terminal. The $fopen function

opens a file and assigns an integer file description. The file descriptor will be used as an argument for all

file I/O tasks. In addition, there are string write tasks ($swrite) that write their formatted outputs to a

string. Verilog also provides tasks for inputting data from files or strings. Such tasks allow reading

characters, formatted data, or complete memory data from external data files or declared strings.

Examples of these tasks are $fgetc, $fscanf, and $sscanf for getting a character from a file, reading

formatted data from a file, and reading formatted data from a string, respectively. Other input tasks exist

for reading memory data directly intoa declared memory. Examples of such tasks are $fread and

$readmemh. File positioning tasks, $fseek and $frewind are also available for positioning file pointer for

read or write. Verilog I/O tasks are useful in developing complete hardware/software environments and

developing test benches.

.

Timescale tasks

Timescale tasks are $printtimescale and $timeformat. The $printtimescale task displays the timescale and

precision of the module whose hierarchical name is being passed to it as its argument. The $timeformat

task formats time for display by file IO and display tasks.

Simulation control tasks

Simulation control tasks are $finish and $stop. The $finish task ends the simulation and exits. Usually,

simulation environments require a confirmation before the action of exiting the environment is taken. The

$stop task suspends the simulation and does not exit the simulation environment.

Timing check tasks

Timing check tasks are used for checking timings, such as pulse width duration and setup and hold times.

In general, timing check tasks check the timing on one signal or the relative timing of several signals for

19

certain conditions to hold. If a violation is detected, a message will be issued in the user simulation

environment display area. For example, the statement shown below uses the $nochange timing check task

to report a violation if d_input changes in the period of three time units before and five time units after

the positive edge of the clock.

$nochange (posedge clock, d_input, 3, 5);

PROGRAMMING LANGUAGAE INTERFACE :

After finishing the compilation of a Verilog module, a dynamic interface is provided by the PLI that

increases the scope of Verilog, so it can be linked with C program.

MODULE:

• The module is the basic building block in Verilog

– Modules can be interconnected to describe the structure

of your digital system

– Modules start with keyword module and end with

keyword end module.

Module Ports

– Similar to pins on a chip

– Provide a way to communicate with outside world

– Ports can be input, output or in out.

A module is the main structure for definition of hardware components and test benches. Modules begin

with the module keyword and end with end module. Immediately following the module keyword, port list

of the module appears enclosed in parenthesis. Declaration of mode, type, and size of ports can either

appear in the port list or as separate declarations.

Example:

module FlipFlop (preset, reset, din, clk, qout);

input preset, reset, din, clk;

output qout;

reg qout;

20

always @ (posedge clk) begin

if (reset) qout <= #7 0;

else if (preset) qout <= #7 1;

else qout <= #8 din;

end

end module

The body of a module consists of the specification of the operation of the hardware the module is

representing. A test bench module has no ports. It instantiates the module under test (MUT) and through

the use of concurrent statements or procedural blocks applies data to the ports of MUT. Multiple modules

can be tested with the same test bench.

TEST BENCHES:

Values assigned to inputs of a circuit for examining its operation are either specified within a simulation

environment using a waveform editor, or by a Verilog test bench. In this description, TriMux is

instantiated

`timescale 1ns/100ps

module TriMuxTest;

reg i0=0, i1=0, s=0;

wire y;

TriMux MUT (i0, i1, s, y);

initial begin

#15 i1=1’b1;

#15 s=1’b1;

#15 s=1’b0;

#15 i0=1’b1;

#15 i0=1’b0;

#15 $finish;

21

end

end module

The initial statement is a procedural construct and uses delay control statements to delay the program

flow in this procedural block. After each such delay, a value is assigned to i0, i1, or s. At the end of this

block, after a 15-ns delay, the $finish simulation control task finishes the simulation run. The delay

before $finish allows the last input change to have a chance to affect the circuit output. The delay values

(15 ns) used in this example are chosen so that inputs remain stable while a change is propagating

through the circuit.

LANGUAGE CONSTRUCTS AND CONVENTIONS:

Keywords:

Every language has some keywords reserved for certain use. They describe the language constructs. In

Verilog there are many keywords. Few of them are:

1. Module: a module is defined starting with this keyword.

2. End module: a module is ended with this definition

3. Begin: a set of statements in a block start with this keyword.

4. End: a set of statements within the block are terminated with this word.

5. If : verifies conditional statements.

IDENTIFIERS:

Identifiers are names that are given to elements such as modules, registers, ports, wires, instances, and procedural blocks. An identifier is

any sequence of letters, digits, and the underscore (_) symbol except that:

the first character must not be a digit, and the identifier must be 1024 characters or less.

Verilog is case sensitive, ie Upper and lower case letters are considered to be different. System tasks and system functions are identifiers

that always start with the dollar symbol. Escaped identifiers allow for any printable ASCII character to be included in the name. Escaped

identifiers begin with white space. The backslash (“\”) character leads off the identifier, which is then terminated with white space. The

leading backslash character is not considered part of the identifier.

Examples of escaped identifiers include:

22

 \flip-flop

 \a+b

Escaped identifiers are used for translators from other CAD systems. These systems may allow special characters in identifiers. Escaped

identifiers should not be used under normal circumstances.

WHITE SPACE CHARACTERS & COMMENTS:

White space is defined as any of the following characters: blanks, tabs, newlines, and form feeds. These are ignored except for when they are

found in strings.

There are two forms of comments. The single line comment begins with the two characters

// and ends with a new-line.

A block comment begins with the two characters /* and ends with the two characters */. Block comments may span several lines. However,

they may not be nested.

NUMBERS:

Constants in Verilog are integer or real. Specification of integers can include X (or x) and Z (or z) in addition to the standard 0 and 1 logic

values. Integer formats provide various ways for representing bit streams. Integers may be sized or un sized. A sized integer begins with the

number of equivalent bits, followed by the single quote character ('), a base specifier, and the digits of the number in the specified base. The

base specifier is a single lower or uppercase character, b, d, o, or h for binary, decimal, octal, and hexadecimal bases. The general format for

integers is: number_of_bits ‘base_identifier digits

Digits in the decimal (d) system are 0 through 9. For hexadecimal, octal, and binary systems, in addition to their standard digits, X and Z

(both upper and lowercase) characters are also allowed. Hexadecimal and octal X and Z digits expand to 4 or 3 bits of X and Z respectively.

A number without the number_of_bits specification is regarded as an un sized number

`timescale 1ns/100ps

module NumberTest;

reg [11:0] a = 8’shA6; initial $displayb (“a=”, a);

// a=111110100110

23

reg [11:0] b = 8’sh6A; initial $displayb (“b=”, b);

// b=000001101010

reg [11:0] c = ‘shA6; initial $displayb (“c=”, c);

// c=000010100110

reg [11:0] d = ‘sh6A; initial $displayb (“d=”, d);

// d=000001101010

reg [11:0] e = -8’shA6; initial $displayb (“e=”, e);

// e=000001011010

reg [11:0] f = -’shA6; initial $displayb (“f=”, f);

// f=111101011010

reg [11:0] g = 9’shA6; initial $displayb (“g=”, g);

// g=000010100110

reg [11:0] h = 9’sh6A; initial $displayb (“h=”, h);

// h=000001101010

reg [11:0] i = -9’shA6; initial $displayb (“i=”, i);

// i=111101011010

reg [11:0] j = -9’sh6A; initial $displayb (“j=”, j);

// j=111110010110

reg [11:0] k = 596; initial $displayb (“k=”, k);

// k=001001010100

reg [11:0] l = -596; initial $displayb (“l=”, l);

24

// l=110110101100

Endmodule

STRINGS:

The strings in Verilog are sequences of 8-bit ASCII characters enclosed within quotation marks.

"This is an example"

As mentioned before white spaces are not ignored inside this string. There is no special data type

available to store strings. reg should be used to store the stings. Above string example has 18 characters

(including white spaces) so it nees following variable to store the completer string

reg[8*[18-1]:0] a;

Now 'a' can hold the above string

a = "This is an example";

If you wan to include special characters like quotes(") you must use escape sequence.

text = "\"vlsi-world.com\"";

text1 = "vlsi-world.com";

text will produce "vlsi-world.com"

text1 will produce vlsi-world.com

Use \t to insert tabs

 \n to insert new lines

 \\ to insert \ character

 \" to insert " character

LOGIC VALUES :

0: zero, logic low, false, ground

• 1: one, logic high, power

• X: unknown

• Z: high impedance, unconnected, tri-state

Bit type, or bits of vectors or arrays, of Verilog wires and variables take the 4-value logic value system.

Values in this system are 0, 1, Z, and X. The 0 value represents forcing 0 like a direct pull to the ground,

or a resistive 0, or a capacitive 0. A resistive 0 is generated when there is a

large resistance between a line and a forcing 0 value. A capacitive 0 is when a line is float; but has a

capacitance that has a zero charge. The 1 value represents forcing 1, resistive 1, and a capacitive 1. These

are defined similar to various modes of the 0 value. For example a forcing 1 is defined as the logic value

driven by a supply voltage. The Z value represents an undriven, high-impedance value. This is the

25

electrical float which causes no current flow to either supply or ground voltage. Both Z and z are

acceptable forms of this logic value. The X value represents a conflict in multiple driving values, an

unknown, an uninitialized value, a short between two opposing values (0 and 1), or a bus contention.

Driven wires and Verilog variables assume X for their initial values. Figure 3.5 shows several examples

for the four values of Verilog’s logic value system. Both X and x are acceptable forms of this logic value.

STRENGTHS:

The strength declaration construct is used for modeling net type variables for a close correspondence with

physical wires.

(Strength1, Strength0)

(Strength0, Strength1)

Strength1:

supply1, strong1, pull1, large1, weak1, medium1, small1, highz1

Strength0:

supply0, strong0, pull0, large0, weak0, medium0, small0, highz0

Strengths can be used to resolve which value should appear on a net or gate output.

There are two types of strengths: drive strengths (Example 1) and charge strengths (Example 2). The

drive strengths can be used for nets (except trireg net), gates, and UDPs. The charge strengths can be

used only for trireg nets. The drive strength types are supply, strong, pull, weak, and highz strengths.

The charge strength types are large, medium and smallstrengths.

All strengths can be ordered by their value. The supply strength is the strongest and the highz strength is

the weakest strength level. Strength value can be displayed by system tasks ($display, $monitor - by

using of the %v characters - see Display tasks for more explanation).

Strength Value Value displayed by display tasks

supply 7 Su

strong 6 St

pull 5 Pu

large 4 La

weak 3 We

medium 2 Me

small 1 Sm

highz 0 HiZ

f two or more drivers drive a signal then it will have the value of the strongest driver (Example 3).

If two drivers of a net have the same strength and value, then the net result will have the same value and strength (Example 4).

26

If two drivers of a net have the same strength but different values then signal value will be unknown and it will have the same strength as
both drivers (Example 5).

If one of the drivers of a net has an H or L value, then signal value will be n1n2X, where n1 is the strength value of the driver that has the
smaller strength, and n2 is strength value of driver that has the larger strength (Example 6).

The combinations (highz0, highz1) and (highz1, highz0) are illegal.

DATA TYPES:

Verilog has net and reg data types representing wires and variables,

respectively. The net type represents data carriers such as interconnecting wires, gate outputs, and busses. The reg data type represents

variables that hold the value they are assigned until they are overwritten. Additionally, a net or a reg can be declared as signed, which

determines how they interpret data assigned to them

• Nets

– Nets are physical connections between devices

– Nets always reflect the logic value of the driving device

– Many types of nets, but all we care about is wire

• Registers

– Implicit storage – unless variable of this type is

modified it retains previously assigned value

– Does not necessarily imply a hardware register

– Register type is denoted by reg

– int is also used

SCALARS AND VECTORS :

Vectors are multiple bit widths net or reg data type variables that can be declared by specifying their range.

Syntax:

net_type [msb:lsb] list_of_net_identifiers;

reg [msb:lsb] list_of_register_identifiers;

Vector range specification contains two constant expressions: the msb (most significant bit) constant expression, which is the left-hand value

of the range and the lsb (least significant bit) constant expression, which is the right-hand value of the range. The msb and lsb constant

expressions should be separated by a colon.

27

Both the msb constant expression and the lsb constant expression can be any value - positive, negative, or zero. The lsb constant expression
can be greater, equal or less than the msb constant expression.

Vectors can be declared for all types of net data types and for reg data types. Specifying vectors for integer, real, realtime, and time data
types is illegal.

Vector nets and registers are treated as unsigned values (see: Arithmetic expressions with registers and integers for more explanations).

 Both the msb and the lsb expressions should be constant expressions.

 The msb and the lsb constant expressions may be positive, negative, or zero.

 The lsb constant expression may be greater, equal or less than the msb constant expression.

 Vectors can be declared only for nets and reg data types.

 Vector declaration for integer, real, realtime, and time data types are illegal.

PARAMETERS:

Parameters are constants typically used to specify the width of variables and time delays.

Syntax :

parameter identifier = constant_expression ,

identifier = constant_expression ;

defparam hierarchical_path = constant_expression ;

In Verilog HDL, parameters are constants and do not belong to any other data type such as net or register data types.

A constant expression refers to a constant number or a previously defined parameter .You are not allowed to modify parameter values at

runtime, but you can modify a parameter value using the defparam statement. The defparam statement can modify parameters only at the
time of compilation. Parameter values can also be modified using #delay specification with module instantiation.

In Verilog there are two ways to override a module parameter value during a module instantiation. The first method is by using
the defparam keyword and the second method is called module instance parameter value assignment.

After the defparam keyword, the hierarchical path to the parameter is specified along with the new value of the parameter. In this case, the

new value should be a constant expression . If the right-hand side expression references any parameters it should be declared within the
module where defparam is invoked .

The module instance parameter value assignment method looks like an assignment of delay to gate instance .This method overrides

parameters inside instantiated modules, in the order, that they appear in the module. Using this format, parameters cannot be skipped.

Constant expressions can contain previously declared parameters. When changes are detected on the previously declared parameters, all

parameters that depend on this value are automatically updated.

Example :

module top;

reg Clk ;

reg [7:0] D ;

wire [7:0] Q ;

my_module inst_1(Clk, D, Q) ;

endmodule

module override ;

defparam top.inst_1.width = 7 ;

endmodule

28

 Parameters are constants.

 If you are using the defparam statement, remember that you have to specify a hierarchical path to your parameter.

 You cannot skip over a parameter in a module instance parameter value assignment. If you need do this, use the initial value for

parameter that is not to be overwritten.

 When one parameter depends on the other, remember that if you change the first one, the second will automatically be updated.

MEMORIES:

Memories are arrays of registers.

SYNTAX :

reg memory_width memory_identifier memory_depth;

integer memory_identifier memory_length;

time memory_identifier memory_length;

Memories can be declared only for reg, integer and time data types. Depth of memory should be declared by specifying a range following

the memory identifier . Registers and memories can be declared in the same line .Elements of memory type can be accessed by memory

index . An assignment to a memory identifier without specified memory index is illegal. Bit-selects and part-selects on memory elements are

not allowed. If access to individual bits of memory is needed, then a word containing that bit should be assigned to a register with the same

width. All operations should then be done on this register and the result should be assigned back to the memory word . Memory words can

be accessed individually, but bit-select and part-select operations cannot be done on memories or memory words directly.

Vector declaration and memory declaration are not the same. If a variable is declared as a vector, all bits can be assigned a value in

one statement. If a variable is declared as memory then a value to each element should be assigned separately .

reg [7:0] vect;

reg array[7:0];

vect = 8'b11001010;

array[7] = 1'b1;

array[6] = 1'b1;

array[5] = 1'b0;

array[4] = 1'b0;

array[3] = 1'b1;

array[2] = 1'b0;

array[1] = 1'b1;
array[0] = 1'b0;

 Memories can be declared only for reg, integer and time registers types.

 Bit-selects and part-selects on memory elements are prohibited.

OPERATORS :

Operators provide a means to construct expressions.

Syntax :

Arithmetic: + - * /

29

Modulus: %

Relational: < <= > >=

Logical: ! && ||

Logical equality: == !=

Case equality: === !==

Bit-wise: ~ & | ^ ~^ ^~

Reduction: & ~& | ~| ^ ~^ ^~

Shift: << >>

Conditional: ?:

Event or: or

Concatenations: {} {{}}

Verilog HDL operators can be divided into several groups.

Operator Description

+ - ! ~ Unary

* / % Arithmetic

+ - (binary) Binary

<< >> Shift

< <= > => Relational

== != === !== Equality

& ~& and nand

^ ~^ ^~ xor xnor

| ~| or nor

&& Logical and

|| Logical or

?: Conditional operator

Table 13: Operator's priority

Arithmetic operators

The arithmetic operators can be used with all data types.

30

Operator Description

a + b a plus b

a - b a minus b

a * b a multiply by b

a / b a divide by b

a % b a modulo b

Table 14: Arithmetic operators

The modulus operator is not allowed for real data type variables. For the modulus operator, the result

takes the sign of the first operand.

Relational operators

The relational operators are used to compare expressions. The value returned by the relational operators

is 0 if the expression evaluates to false and 1 if expression evaluates to true.

Operator Description

a < b a less than b

a > b a greater than b

a <= b a less than or equal to b

a => b a greater than or equal to b

Equality operators

The equality operators are used to compare expressions. If a comparison fails, then the result will be 0,

otherwise it will be 1.

If both operands of logical equality (==) or logical inequality (!=) contain unknown (x) or a high-

impedance (z) value, then the result of comparison will be unknown (x). Otherwise it will be true or false.

If operands of case equality (===) or case inequality (!==) contain unknown (x) or a high-impedance (z)

value, then the result will be calculated bit by bit.

Examples of using the equality operators are shown in .

Logical operators

The logical operators are used to connect expressions.

Operator Description

a && b a and b

a || b a or b

31

!a not a

The result for these operators is 0 (when false), 1 (when true), and unknown (x - when ambiguous). The

negation operator (!) turns a nonzero or true value of the operand into 0, zero or false value into 1, and

ambiguous value of operator results in x (unknown value).

Bit-wise operators

The bit-wise operators calculate each bit of results by evaluating the logical expression on a pair of

corresponding operand bits.

& 0 1 x z

0 0 0 0 0

1 0 1 x x

x 0 x x x

z 0 x x x

Bit-wise and operator

| 0 1 x z

0 0 1 x x

1 1 1 1 1

x x 1 x x

z x 1 x x

Bit-wise or operator

^ 0 1 x z

0 0 1 x x

1 1 0 x x

x x x x x

z x x x x

Bit-wise exclusive or operator

~^ ^~ 0 1 x z

0 1 0 x x

1 0 1 x x

x x x x x

z x x x x

32

Bit-wise exclusive nor operator

~ Result

0 1

1 0

x X

z X

Bit-wise negation operator

Reduction operators

The reduction operator produces a 1-bit result. This result is calculated by recursively applying bit-wise

operation on all bits of the operand. At each step of this recursive calculation the logical bit-wise

operation is performed on the result of a previous operation and on the next bit of the operand. The

operation is repeated for all bits of the operand.

Shift operators

The shift operators perform left and right shifts on their left operand by the number of positions specified

by their right operand. All vacated bits are filled with zeroes. If the expression that specifies the number

of bits to shift (right operand) has unknown (x) or high-impedance (z) value, then result will be unknown.

Conditional operator

The conditional operator is described in the Conditional operator section.

Concatenations

Concatenations are described in the Concatenations section.

Event or operator

The event or operator is described in the section on Procedural timing controls.

UNIT II

GATE LEVEL MODELLING

INTRODUCTION:

The previous section discussed the role of wires and basics of generating Verilog modules for simulation.

Building upon that material, this section presents generation of Verilog modules using predefined gate

33

primitives of this language. We will also discuss delay issues related to these gates and ways of defining

them and the way they affect timing of an entire system. Verilog has built in primitives like gates,

transmission gates, and switches. These are rarely used in design (RTL Coding), but are used in post

synthesis world for modeling the ASIC/FPGA cells; these cells are then used for gate level simulation, or

what is called as SDF simulation. Also the output net list format from the synthesis tool, which is

imported into the place and route tool, is also in Verilog gate level primitives.

AND& OTHERS GATE PRIMITVES:

Verilog gate level list includes standard n_input, n_output, and tri-state gates. Verilog instantiation of

these gates are also shown in this figure. In addition, Verilog has switch level and transistor primitives

that will be discussed in a later chapter. Gates categorized as n_input gates are and, nand, or, nor, xor,

and xnor. An n_input gate has one output, which is its left-most argument, and can have any number of

inputs that may be listed as its argument separated by commas. These gates can have up to two delay

parameters that can appear after the name of the gate in a set of parenthesis followed by a sharp sign. An

example instantiation of a 4-input nand

is shown here.

nand #(3, 5) gate1 (w, i1, i2, i3, i4);

EXAMPLE:

Example 1: Full Adder

module FullAdder(X, Y, Cin, Cout, Sum);

input X, Y, Cin; // input terminal definitions

output Cout, Sum; // output terminal definitions

wire w1, w2, w3, w4; // internal net declarations

34

xor #(10) (w1, X, Y); // delay time of 10 units

xor #(10) xor2(Sum, w1, Cin); // with instance name

and #(10) (w2, X, Y);

and #(10) (w3, X, Cin);

and #(10) (w4, Y, Cin);or #(10, 8)(Cout, w2, w3, w4); // 3 input or (rise time of 10, fall // time of

8)

Endmodule

MODULE STRUCTURES:

A module is comprised of the interface and the design behavior.

module | macromodule identifier (port_list) ;

 ports_declaration ;

 module_body ;

endmodule

All module declarations must begin with the module (or macromodule) keyword and end with the endmodule keyword. After the module

declaration, an identifier is required. A ports list is an option. After that, ports declaration is given with declarations of the direction of ports
and the optionally type. The body of module can be any of the following:

 Any declaration including parameter, function, task, event or any variable declaration.

 Continuous assignment.

 Gate, UDP or module instantiation.

 Specify block.

 Initial block

 Always block.

If there is no instantiation inside the module, it will be treated as a top-level module.

TRI STATE GATES:

35

Transmission gates tran and rtran are permanently on and do not have a control line. Tran can be

used to interface two wires with seperate drives, and rtran can be used to weaken signals.

module transmission_gates();

 reg data_enable_low, in;

 wire data_bus, out1, out2;

 bufif0 U1(data_bus,in, data_enable_low);

 buf U2(out1,in);

 not U3(out2,in);

 initial begin

 $monitor(

 "@%g in=%b data_enable_low=%b out1=%b out2= b data_bus=%b",

 $time, in, data_enable_low, out1, out2, data_bus);

 data_enable_low = 0;

 in = 0;

 #4 data_enable_low = 1;

 #8 $finish;

 end

36

 always #2 in = ~in;

end

ARRAY OF INSTANCES OF PRIMITVES :

Verilog uses different constructs for describing a module with different levels of detail. Verilog basic

logic gates are called primitives and for describing a component using these primitives, a construct called

primitive instantiation is used. See for example the multiplexer that is made of AND and OR gates. This

structure can be described in Verilog as

Basic Gates

module MultiplexerA (input a, b, s, output w);

wire a_sel, b_sel, s_bar;

not U1 (s_bar, s);

and U2 (a_sel, a, s_bar);

and U3 (b_sel, b, s);

or U4 (w, a_sel, b_sel);

endmodule

module MultiplexerB (input a, b, s, output w);

GATE PRIMITIVES WITH FLIP FLOP:

Consider a 4-bit asynchronous counter; block diagram using flip-flops is as follows. This is a simple

counter without reset or load options.

37

module counter(clk, count);

input clk;

output[3:0] count;

reg[3:0] count;

wire clk;

initial

 count = 4'b0;

always @(negedge clk)

 count[0] <= ~count[0];

always @(negedge count[0])

 count[1] <= ~count[1];

always @(negedge count[1])

 count[2] <= ~count[2];

always @(negedge count[2])

 count[3] <= ~count[3];

endmodule

DELAYS:

Delays specify a time in which assigned values propagate through nets or from inputs to outputs of gates.

Syntax:

#value

#(value)

#(value, value)

#(value, value, value)

Delays specify how values propagate through nets or gates.

38

The net delay declaration specifies a time needed to propagate values from drivers through the net. It can

be used in continuous assignments (Example 1) and net declarations (Example 2).

The gate delay declaration specifies a time needed to propagate a signal change from the input of a gate

input to its output. The gate delay declaration can be used in gate instantiations (Example 3).

The delays can be also used for delay control in procedural statements (Example 4 - see Procedural

timing control for more explanations).

The delays declaration can contain up to three values: rise, fall, and turn-off delays. The default delay is

zero. If only one delay value is specified then it is used for all signal changes. If two delays are specified

then the first delay specifies the rise delay and the second delay specifies the fall delay. If the signal

changes to high-impedance (z) or to unknown (x) then the smaller value will be used. This means that if

delays are specified as follows: #(4,3) then the second value (3) will be used for signal changes to z or x

value.

If three values are given, then the first value specifies the rise delay, the second specifies the fall delay,

and the third specifies turn-off delay. If the signal changes to unknown (x) value, then the smallest of

these three values will be used.

Value changes Delay used for propagation if:

From: To: 1 delay specified 2 delays specified 3 delays specified

0 1 d1 d1 d1

0 x d1 min(d1, d2) min(d1, d2, d3)

0 z d1 min(d1, d2) d3

1 0 d1 d2 d2

1 x d1 min(d1, d2) min(d1, d2, d3)

1 z d1 min(d1, d2) d3

x 0 d1 d2 d2

x 1 d1 d1 d1

x z d1 min(d1, d2) d3

z 0 d1 d2 d2

z 1 d1 d1 d1

z x D1 min(d1, d2) min(d1, d2, d3)

 STRENGTHS AND CONTENT RESOLUTION:

Strengths can be used to resolve which value should appear on a net or gate output.

There are two types of strengths: drive strengths (Example 1) and charge strengths (Example 2). The

drive strengths can be used for nets (except trireg net), gates, and UDPs. The charge strengths can be

39

used only for trireg nets. The drive strength types are supply, strong, pull, weak, and highz strengths.

The charge strength types are large, medium and smallstrengths.

All strengths can be ordered by their value. The supply strength is the strongest and the highz strength is

the weakest strength level. Strength value can be displayed by system tasks ($display, $monitor - by

using of the %v characters - see Display tasks for more explanation).

Strength Value Value displayed by display tasks

supply 7 Su

strong 6 St

pull 5 Pu

large 4 La

weak 3 We

medium 2 Me

small 1 Sm

highz 0 HiZ

NET TYPES:

Nets are data types that can be used to model physical connections.

Net declaration:

wire range delays list_of_identifiers;

wand range delays list_of_identifiers;

wor range delays list_of_identifiers;

tri range delays list_of_identifiers;

triand range delays list_of_identifiers;

trior range delays list_of_identifiers;

tri0 range delays list_of_identifiers;

tri1 range delays list_of_identifiers;

supply0 range delays list_of_identifiers;

supply1 range delays list_of_identifiers;

trireg strength range delays list_of_identifiers;

40

Net declaration assignment:

wire strength range delays list_of_identifiers = expression;

wand strength range delays list_of_identifiers = expression;

wor strength range delays list_of_identifiers = expression;

tri strength range delays list_of_identifiers = expression;

triand strength range delays list_of_identifiers = expression;

trior strength range delays list_of_identifiers = expression;

tri0 strength range delays list_of_identifiers = expression;

tri1 strength range delays list_of_identifiers = expression;

supply0 strength range delays list_of_identifiers = expression;

supply1 strength range delays list_of_identifiers = expression;

trireg strength range delays list_of_identifiers = expression;

Net data types are used to model physical connections. They do not store values (there is only one exception -

 trireg, which stores a previously assigned value). The net data types have the value of their drivers. If a net

variable has no driver, then it has a high-impedance value (z).

Nets can be declared in a net declaration statement or in a net declaration assignment

Net declarations can contain strength declarations, which specifies the strength of the logic values driven by the net

(see Strengths for more details). The range declaration is used to specify multi-bit nets (vectors). The delays are

used to specify propagation delays through the nets. The strength, delay and range declarations are optional

wire [7:0] a;

tri tristate_buffer;

wand #5 sig_1;

trireg (small) t;

The 'a' variable is a 8-bit wire net.

The 'tristate_buffer' is 1-bit tri net type variable.

The 'sig_1' variable is 1-bit wand net type variable, which propagates driven value to its output in 5 time units.

The 't' variable is trireg net variable with small charge strength.

 EXAMPLE OF BASIC DESIGN

module example();

41

reg [3:0] a, b;

reg [7:0] c, d;

initial

begin

 a = 4'b1110; //14

 b = 4'b0110; //5

 $display("%b", a < b);// false - 0

 $display("%b", a > 8);// true - 1

 $display("%b", a <= b);// false - 0

 $display("%b", a >= 10);// true - 1

 $display("%b", a < 4'b1zzz);// unknown - x

 $display("%b", b < 4'b1x01);// unknown - x

 a = 4'b1100;

 b = 4'b101x;

 $display("%b", a == 4'b1100); // true - 1

 $display("%b", a != 4'b1100);// false - 0

 $display("%b", a == 4'b1z10);// false - 0

 $display("%b", a != 4'b100x);// true ? 1

 $display("%b", b == 4'b101x);// unknown - x

 $display("%b", b != 4'b101x);// unknown - x

 $display("%b", b === 4'b101x);// true - 1

 $display("%b", b !== 4'b101x);// false - 0

 a = 4'b1100;

42

 b = 4'b0000;

 $display("%b", !a);// 0 - false

 $display("%b", !b);// 1 - true

 $display("%b", a && b); // 0 - false

 $display("%b", a || b);// 1 ? true

 c = 8'b1010xzxz;

 d = 8'b10010011;

 $display("%b", c & d); //= 8'b100000xx;

 $display("%b", c | d); //= 8'b1011xx11;

 $display("%b", c ^ d); //= 8'b0011xxxx;

 $display("%b", c ~^ d); //= 8'b1100xxxx;

 $display("%b", ~ c); //= 8'b0101xxxx;

 a = 4'b1111;

 $display("%b", a << 3); //= 4'b1000

 $display("%b", a >> 3); //= 4'b0001

 $display("%b", a << 1'bz); //= 4'bxxxx

 $display("%b", a >> 1'bx); //= 4'bxxxx

end

endmodule

MODELLING AT DATA FLOW LEVEL

INTRODUCTION:

Dataflow modeling provides a powerful way to implement a design. Verilog allows a design processes

data rather than instantiation of individual gates. Dataflow modeling has become a popular design

43

approach as logic synthesis tools have become sophisticated. This approach allows the designer to

concentrate on optimizing the circuit in terms of data flow.

CONTINOUS ASSIGNEMENT STRUCTURE:

A continuous assignment is the most basic statement in data flow modeling, used to drive a value onto a

net, A continuous assignment replaces gates in the description of the circuit and describes the circuit at a

higher level of abstraction. A continuous assignment statement starts with the keyword assign.

//Syntax of assign statement in the simplest form

< continuous_assign >

 : : = assign < drive_strength > ? < delay > ? < list_of_assignments > ;

DELAYS

Delay value control the time between the change in a right-hand-side operand and when the new value is

assigned to the left-hand-side.

The first method is to assign a delay value in a continuous assignment statement. The delay value is

specified after the keyword assign.

module stimulus;

wire OUT;

reg IN1, IN2;

initial

begin

 IN1 = 0; IN2= 0;

 #20 IN1=1; IN2= 1;

 #40 IN1 = 0;

 #40 IN1 = 1;

 #5 IN1 = 0;

 #150 $stop;

end

44

initial

 $monitor("out", OUT, "in1", IN1, "in2",

IN2);

regular_delay rd1(OUT, IN1, IN2);

endmodule

ASSIGNMENT TO VECTORS:

Vector range specification contains two constant expressions: the msb (most significant bit) constant expression, which is the left-hand value

of the range and the lsb (least significant bit) constant expression, which is the right-hand value of the range. The msb and lsb constant
expressions should be separated by a colon.

Both the msb constant expression and the lsb constant expression can be any value - positive, negative, or zero. The lsb constant expression
can be greater, equal or less than the msb constant expression.

Vectors can be declared for all types of net data types and for reg data types. Specifying vectors for integer, real, real time, and time data

types is illegal.

Vector nets and registers are treated as unsigned values (see: Arithmetic expressions with registers and integers for more explanations).

OPERATORS:

Here is a small selection of the Verilog Operators which look similar but have different effects. Logical

Operators evaluate to TRUE or FALSE. Bitwise operators act on each bit of the operands to produce a

multi-bit result. Unary Reduction operators perform the operation on all bits of the operand to produce a

single bit result.

Operator Name Examples

! logical negation

~ bitwise negation

&& logical and

& bitwise and
abus =

bbus&cbus;

& reduction and abit = &bbus;

~& reduction nand

|| logical or

| bitwise or

| reduction or

~| reduction nor

45

^ bitwise xor

^ reduction xor

~^ ^~ bitwise xnor

~^ ^~ reduction xnor

== logical equality, result may be unknown if x or z in the input if (a == b)

=== logical equality including x and z

!= logical inequality, result may be unknown if x or z in the input

!== logical inequality including x and z

> relational greater than

>> shift right by a number of positions
a = shiftvalue >>

2;

>= relational greater than or equal

< relational less than

<< shift left by a number of positions

<= relational less than or equal if (a <= b)

<=
non blocking assignment statement, schedules assignment for future and

allows next statement to execute
#5 b <= b + 2;

=
blocking assignment statement, waits until assignment time before allowing

next statement to execute
#5 a = a + 2;

Verilog also supports arithmetic, replication, and concatenation operators

 UNIT III

 BEHAVIORAL MODELLING

INTRODUCTION :

procedural statements provide a mechanism for describing hardware at still a higher level of abstraction

than any of the formats discussed so far. This level of abstraction is often referred to as the behavioral

level. Verilog’s procedural blocks are bodies within which statements are executed sequentially. This

form of hardware description is, generally, easier for designers to describe their complex hardware.

Procedural bodies do provide mechanisms for specification of timing, but, in general, a hardware

described with procedural structures contains less timing details than a hardware described with assign

statements or primitives. In this section we first present basics of procedural blocks, we will then discuss

timing and flow control in procedural blocks. Various types of statements and their simulation semantics

and hardware implications.

FUNCTIONAL BIFURCATION:

46

Functions provide a means of splitting code into small parts that are frequently used in a model.

function type_or_range identifier;

 parameter_declaration;

 input_declaration;

 register_declaration;

 event_declaration;

 statement;

endfunction

Functions can only be declared inside a module declaration.

Function definition begins with the function keyword and ends with the endfunction keyword. The returned type or range declaration

followed by a function identifier and semicolon should appear after the function keyword. Function can contain declarations of range,

returned type, parameters, input arguments, registers and events (these declarations are similar to module items declaration). Net

declarations are illegal. Declaration of parameters, registers, events and returned type or range are not required. A function without a range

or return type declaration, returns a one-bit value. Functions should have at least one input declaration and a statement that assigns a value to
the register with the same name as the function.

Any expression can be used as a function call argument. Functions cannot contain any time-controlled statements, and they cannot enable
tasks. Functions can return only one value

function [15:0] negation;

input [15:0] a;

negation = ~a;

endfunction

INITIAL CONSTRUCT :

Verilog supports constructs.

module synthesis_initial(

 clk,q,d);

 input clk,d;

 output q;

 reg q;

47

 initial begin

 q <= 0;

 end

 always @ (posedge clk)

 begin

 q <= d;

 end

endmodule

Construct Type Keyword or Description Notes

ports input, inout, output Use inout only at IO level.

parameters parameter This makes design more generic

module definition module

signals and variables wire, reg, tri Vectors are allowed

instantiation
module instances / primitive

gate instances

E.g.- nand (out,a,b), bad idea to code

RTL this way.

function and tasks function , task Timing constructs ignored

procedural
always, if, else, case, casex,

casez
initial is not supported

procedural blocks
begin, end, named blocks,

disable
Disabling of named blocks allowed

data flow assign Delay information is ignored

named Blocks disable Disabling of named block supported.

loops for, while, forever
While and forever loops must contain

@(posedge clk) or @(negedge clk)

ASSIGNEMENT WITH DELAYS:

48

Another form of delay specification in procedural statements is intra assignment delay. Unlike the delay

control statement that is by itself a separate procedural statement, an intra-assignment delay (or event) is

considered as part of an assignment.

timescale 1ns/100ps

module maj3 (input a, b, c, output reg y);

always @(a, b, c) y = #5 (a & b) | (b &c) | (a & c);

endmodule

and #1 and_gate (o, i1, i2);

or #(5,1) or_gate (o, i1, i2);

bufif1 #(3,4,5) buffer (o, i, c);

WAIT CONSTRUCT :

The wait statement is used as a level-sensitive control. The syntax is:

wait (expression) statement

The processor waits when the expression is FALSE. When the expression is TRUE, the statement is

executed.

The expression is treated as a Boolean value, therefore wait responds to TRUE and FALSE only. Values

'0', 'x' and 'z' are FALSE. Logic '1' is TRUE.

Comparison Between Event and Level Sensitive Processes

An example of an event-driven control is given below as a comparison to the level-sensitive control

which will be described later.

always @(start) #10 go = ~go;

This process uses the @(expression) to trigger the process. The statement will be executed whenever

there is an event on the start signal.

In comparison the following example illustrates a level-sensitive control:

forever wait(start) #10 go = ~go;

The process waits until start is `1'. When the start expression is TRUE, the go signal toggles after 10 time

units. If start continues to stay `1' then go will continue to toggle after every 10 time units due to the

forever definition. The toggling statement will only stop when start returns to `0'.

An event sensitive process is triggered by the edge on a control signal, while a level sensitive process is

triggered by the value on the control signal.

Applications Of The wait Statement

49

The wait statement can be used to:

Synchronise concurrent processes

Hand shake between concurrent processes

The above example of a wait statement is also an example of synchronising. If more than one process is

controlled by the start signal in a similar manner to that above, then when start goes high, several

processes will start to run together. Thus they have been synchronised using the start signal.

always begin

 read = 1;

 forever begin

 wait (write)

 // manipulate data

 storeddata = datain;

 #10;

 read = 0;

 wait (!write)

 read = 1;

 end // forever begin

 end // always begin

MULTIPLE ALWAYS BLOCKS:

The block statements provide a means of grouping two or more statements in the block.

begin : name

 statement;

 ...

end

fork : name

50

 statement;

 ...

Join

DESIGNS AT BEHAVIORAL LEVEL MODELLING:

The behavior level is used to describe a system intuitively. Therefore, this level is frequently used to

verify algorithms or system behavior like a high-level language. This level is not focused on

synthesizability or structural realization of the design.

This behavior-level description includes an initial statement and thus it is not

synthesizable.

module adder4 (in1, in2, sum, zero);

input [3:0] in1, in2;

output [4:0] sum;

output zero;

reg [4:0] sum;

reg zero;

initial

begin

sum = 0;

zero = 1;

end

always @ (in1 or in2)

begin

sum = in1 + in2;

if (sum == 0) zero = 1;

else zero = 0;

end

51

endmodule

BLOCKING AND NON BLOCKING ASSIGNMENTS :

Procedural assignments discussed so far in this chapter are all of the blocking type. This means that while

the assignment is taking place, the flow of the program into the procedural block is halted (or blocked).

This is especially noticeable when using intra-assignment delays as discussed above. A different type of

procedural assignment is a non blocking assignment that uses <= instead of =. This type of assignment

schedules its right hand side into the left-hand side reg and continues on to the next statement.

 CASE STATEMENT :

The case statement is a decision instruction that chooses one statement for execution. The statement

chosen is one with a value that matches that of the case statement.

case (expression)

 expression : statement

 expression {, expression} : statement

 default : statement

endcase

casez (expression)

 expression : statement

 expression {, expression} : statement

 default : statement

endcase

casex (expression)

 expression : statement

 expression {, expression} : statement

 default : statement

52

endcase

The case statement starts with a case or casex or casez keyword followed by the case expression (in parenthesis) and case items

or default statement. It ends with the endcase keyword. The default statement is optional and should be used only once. A case item

contains a list of one or more case item expressions, separated by comma, and the case item statement. The case item expression and the
case item statement should be separated by a colon.

During the evaluation of the case statement, all case item expressions are evaluated and compared in the order in which they are given. If the

first case item expression matches the case expression, then the statement which is associated with that expression is executed and the

execution of the case statement is terminated. If comparison fails, then the next case item expression is evaluated and compared with the

case expression. If all comparisons fail and the default section is given, then its statements are executed. Otherwise none of the case items
will be executed.

Both case expression and case item expressions should have the same bit length. None of the expressions are required to be a constant
expression.

The case expression comparison is effective when all compared bits are identical. Therefore, special types of case statement are provided,

which can contain don't-care values in the case expression and in the case item expression. These statements can be used in the same way as

the case statement, but they begin with the keywords casex and casez.

The casez statement treats high-impedance (z) values as don't-care values and the casex statement treats high-impedance and unknown (x)

values as don't care values. If any of the bits in the case expression or case item expression is a don't-care value then that bit position will be
ignored.

The don't-care value can be also specified by the question mark (?), which is equal to z value.

reg a;

case (a)

 1'b0 : statement1;

 1'b1 : statement2;

 1'bx : statement3;

 1'bz : statement4;

endcase

SIMULATION FLOW:

When the $time system function is called, it returns the current time as a 64-bit integer value. However, this value is scaled to the `timescale
unit. (See Timescale chapter)

The $stime system function returns current time as a 32-bit unsigned integer value. If the current simulation time is too large and the value

does not fit in 32 bits, the function only returns the 32 low order bits of the value. The returned value is also scaled to the `timescale.

The $realtime system function returns a value as a real number. As with the other time tasks, the returned value is scaled to the `timescale

Integer cur_time ;

cur_time = $time ;

Example 2

integer cur_time ;

cur_time = $stime ;

Example 3

53

real cur_time ;

cur_time = $realtime ;

Example 4

$display($time, "is current time.");

IF AND IF ELSE CONSTRUCTS :

The if statement is used to choose which statement should be executed depending on the conditional

expression.

if (conditional expression)

 statement1;

else

 statement2;

if (conditional expression)

 statement1;

else if (conditional expression)

 statement2;

else

 statement3;

The 'if' statement can be used in two ways: as a single 'if-else' statement (Example 1) or as a multiple 'if-else-if' statement (nested if

statement - Example 2).

In the first case when the conditional expression is evaluated to true (or non-zero), then statement1 is executed and if condition is false (or
zero), then statement2 is executed.

In the second case, if the first conditional expression is evaluated to be true, then statement1 is executed. Otherwise, the second conditional
expression is evaluated and depending on its values, statement2 or statement3 is executed.

Every statement can be a group of statements (enclosed in a begin-end block - Example 3) or a null statement (; - Example 4). The
conditional expression can be any valid expression.

54

if (a == 5)

 b = 15;

else
 b = 25;

ASSIGN AND DEAASIGN CONSTRUCTS :

The assign and deassign procedural assignment statements allow continuous assignments to be placed

onto registers for controlled periods of time. The assign procedural statement overrides procedural

assignments to a register. The deassign procedural statement ends a continuous assignment to a register.

module assign_deassign ();

 reg clk,rst,d,preset;

 wire q;

 initial begin

 $monitor("@%g clk %b rst %b preset %b d %b q %b",

 $time, clk, rst, preset, d, q);

 clk = 0;

 rst = 0;

 d = 0;

 preset = 0;

 #10 rst = 1;

 #10 rst = 0;

 repeat (10) begin

 @ (posedge clk);

 d <= $random;

 @ (negedge clk) ;

 preset <= ~preset;

 end

55

 #1 $finish;

 end

 // Clock generator

 always #1 clk = ~clk;

 // assign and deassign q of flip flop module

 always @(preset)

 if (preset) begin

 assign U.q = 1; // assign procedural statement

 end else begin

 deassign U.q; // deassign procedural statement

 end

 d_ff U (clk,rst,d,q);

 endmodule

 // D Flip-Flop model

 module d_ff (clk,rst,d,q);

 input clk,rst,d;

 output q;

 reg q;

 always @ (posedge clk)

 if (rst) begin

 q <= 0;

 end else begin

56

 q <= d;

 end

 endmodule

REPEAT CONSTRUCTS:

The repeat loop executes < statement > a fixed < number > of times.

module repeat_example();

 reg [3:0] opcode;

 reg [15:0] data;

 reg temp;

 always @ (opcode or data)

 begin

 if (opcode == 10) begin

 // Perform rotate

 repeat (8) begin

 #1 temp = data[15];

 data = data << 1;

 data[0] = temp;

 end

 end

 end

 // Simple test code

 initial begin

 $display (" TEMP DATA");

57

 $monitor (" %b %b ",temp, data);

 #1 data = 18'hF0;

 #1 opcode = 10;

 #10 opcode = 0;

 #1 $finish;

 end

 FOR LOOP:

Loop statements provide a means of modeling blocks of procedural statements.

for (assignment; expression; assignment) statement;

The for instruction executes a given statement until the expression is true. At the initial step, the first assignment will be executed. At the

second step, the expression will be evaluated. If the expression evaluates to an unknown, high-impedance, or zero value, then

the for statement will be terminated. Otherwise, the statement and second assignment will be executed. After that, the second st

initial begin

 for (index=0; index < 10; index = index + 2)

 mem[index] = index;

end

DISABLE CONSTRUCT :

The disable statement provides means of terminating active procedures

disable task_identifier;

disable block_identifier

The disable statement can be used to terminate tasks (Example 1), named blocks (Example 2) and loop statements (Example 3) or for

skipping statements in loop iteration statements (Example 4). Using the disable keyword followed by a task or block identifier will only

disable tasks and named blocks. It cannot disable functions. If the task that is being disabled enables other tasks, all enabled tasks will be

terminated.

If a task is enabled more than once, then disabling that task terminates all its instances.

task t;

output o;

integer o;

58

#100 o = 15;

endtask
disable t; // Disabling task t.

WHILE LOOP:

Looping statements appear inside procedural blocks only; Verilog has four looping statements like any

other programming language.

The while instruction executes a given statement until the expression is true. If a while statement starts

with a false value, then no statement will be executed.

module test;

parameter MSB = 8;

reg [MSB-1:0] Vector;

integer t;

initial

begin
 t = 0;

 while (t < MSB)

 begin
 //Initializes vector elelments

 Vector[t] = 1'b0;

 t = t + 1;

 end

end

endmodule

FOREVER LOOP:

The forever instruction continuously repeats the statement that follows it. Therefore, it should be used with procedural timing controls
(otherwise it hangs the simulation).

forever statement;

always begin

 counter = 0;

 forever #10 counter = counter + 1;

end

 PARALLEL BLOCKS:

Syntax (for parallel block):

59

fork

[parallel execution statements]

join

A Block is a section of Verilog code within a module which can be contained

within begin...end statements. In many simulations different blocks run in parallel: operations from

different blocks are executed in one time slice. Within a block it is more usual for commands to be

executed in a serial manner, particularly when learning the language as this approack mirrors programing

languages more closely. The following two examples illustrate serial execution:

 module serial_no_delay;

 reg a, b;

 reg [1:0] x, y, z;

 initial begin EXAMPLE 1

 a = 1'b0;

 b = 1'b1;

 x = {a, b};

 y = {b, a};

 z = y;

 end

 endmodule

 module serial_with_delays;

 reg a, b;

 reg [1:0] x, y, z;

 initial begin EXAMPLE 2

 a = 1'b0;

 #20 b = 1'b1;

 #10 x = {a, b};

 #30 y = {b, a};

 #30 z = y;

 end

 endmodule

EVENTS :

In Verilog, named events are static objects that can be triggered via the -> operator, and processes can

block until an event is triggered via the @ operator. System Verilog events support the same basic

operations, but enhance Verilog events in several ways.The most salient semantic difference is that

Verilog named events do not have a value or duration, whereas SystemVerilog events can have a

persistency that lasts throughout the time-step on which they are triggered. Also, System Verilog events

act as handles to synchronization queues, thus, they can be passed as arguments to tasks, and they can be

60

dynamically allocated and reclaimed. System Verilog provides for two different types of

events: persistent events and non-persistent events.

Unit-IV

SWTICH LEVEL MODELLING:

Switch level models are used to allow detailed construction of logical gates and functions and also to allow complex delay modeling to be

used. Usually, transistor level modeling is referred to modeling hardware structures using transistor models with analog input and output

signal values. On the other hand, gate level modeling refers to modeling hardware structures using gate models with digital input and output

signal values. Between these two modeling schemes is what is referred to as switch level modeling. At this level, a hardware component is

described at the transistor level, but transistors only exhibit digital behavior and their input, and output signal values are only limited to
digital values.

At the switch level, transistors behave as on-off switches. Verilog uses a 4-value logic value system, so Verilog switch input and output

signals can take any of the four 0, 1, Z, and X logic values. Switch constructs, their simulation behavior and simulation of hardware

constructs based on such switches will be discussed here.

BASIC TRANSISTOR& cmos SWITCHES:

A 2-input NAND gate using NMOS and PMOS transistors is shown.The inputs of the pmos primitives are tied to Vdd to supply logic 1 to

the output, and the input of the lower nmos primitive is tied to Gnd to supply logic 0 to the output. For unidirectional switches, the switch

input is the transistor Source, its output is the Drain, and the switch control input is the transistor Gate input. The input-output arrangement

of switches are such that the input sides of the nmos switches are on the Gnd side and the input sides of the pmos switches are on the Vdd

side. This arrangement is justified by an actual transistor level circuit because the Source of an NMOS transistor feeds logic 0 to the output

(discharging the output throught Gnd), and the Source of a PMOS transistor feeds logic 1 to the output (charging it through Vdd) of a CMOS
gate

cmos c1(out , data , ncontrol , pcontrol) ;

CMOS switches are declared with the keyword cmos. A CMOS device can be modeled with a NMOS and PMOS devices. The symbol for
a

tran t1(inout1, inout2) ;

tranif0 t2 (inout1, inout2 , control) ;

tranif1 t3 (inout1, inout2 , control) ;

The tran switch acts as a buffer between the two signals inout1 and in-out2. Either inout1, or inout2 can be driver signal. The tranif0 switch

connects the two signals inout1 and inout2 only if the control signal is logic 0. If the control signal is a logic 1, the nondriver signal gets a
high impedance value z. The driver signal retains value from its driver. The tranif1 switch conducts if the control signal is a logic 1.

EXAMPLE:

module my_nor(out, A, B);

output out;

input A, B;

wire c;

supply1 pwr; //pwr is connected to Vdd

61

supply0 gnd; //gnd is connected to Vss(ground)

pmos (c, pwr, B);

pmos (out, c, A);

nmos (out, gnd, A);

nmos (out, gnd, B);

endmodule

BI DIRECTIONAL GATES:

Verilog Provides in-built primitives for basic gate and switch level modeling. Any circuit can be modeled by using continuous assignment of

gate and switch level primitives.

and (strong1, weak0)#(1,2) gate1(out, in1, in2);

This is an and gate with output 'out' and two inputs in1 and in2. Strong1 and weak0 are optional driving strengths and gate1 is optional

instance name that can be used while debugging. First parameter in the bracket is output and you can have any number of inputs after that.

This is how you use a 3 input and gate without instance name, delay and driving strengths:

and (out, in1, in2, in3);

and, nand, not, nor, or, xor, xnor, buf, bufif0, bufif1, rtranif1, nmos, pmos, rpmos, tran, rtran, pullup, pulldown, cmos, rnmos, tranif1,
tranif0, notif0, notif1, rtranif0, rcmos are the built-in primitives.

Transmission gates are bi-directional and can be resistive or non-resistive.

Syntax: keyword unique_name (inout1, inout2, control);

e.g. tranif0 trans_gate1 (net5, net8, cnt);

 rtranif1 rtrans_gate2 (net5, net12, cnt); example 2

Transmission gates tran and rtran are permently on and do not have a control line. Tran can be used to

interface two wires with seperate drives, and rtran can be used to weaken signal

TIMING DELAYS:

Verilog defines some basic logic gates as part of the language. In Figure 1, module

some_logic_component instantiates two gate primitives: the not gate and the and gate. The output of the

gate is the first parameter, and the inputs are the rest of the parameters. These primitives are scaleable so

you can get multiple input gates just by adding inputs into the parameter list. For example:

62

nand a1(out1, in1, in2); //2-input NAND gate

nand a2(out1, in1, in2, in3, in4, in5); //5-input NAND gate

By default the timing delay for the gate primitives is zero time. You can define the rising delay, falling

delay using the #(rise, fall) delay operator. And for tri-state gates you can also define the turn-off delay

(transition to high impedance state Z) by using the #(rise, fall, off) delay operator. For example

notif0 #(10,11,27) inv2(c,d,control) //rise=10, fall=11, off=27(not if control=0)

nor #(10,11) nor1(c,a,b); //rise=10, fall=11 (nor gate)

xnor #(10) xnor1(i,g,h); //rise=10, fall=10 (xnor gate)

Also each of the 3 delays can be defined to have minimum, typical, and a maximum value using the a

colon to separate the values like 8:10:12 instead of 10 in the above examples. At run time, the Verilog

simulator looks for to see if the +mindelay, +typdelay, or +maxdelay option has been defined so that it

will know which of the 3 time values to use. In VeriLogger these options are set using the Project >

Project Preferences menu. If none of the options are specified then the typical value is used.

// min:typ:max values defined for the (rise, fall) delays

or #(8:10:12, 10:11:13) or1(c,a,b);

The delay operator has one subtle side effect: it swallows narrow input pulses. Normally, the delay

operator causes the output response of a gate to be delayed a certain amount of time. However if the input

pulse width is shorter then the overall delay of the gate then the change will not be shown on the output.

Here is a list of logic primitives defined for Verilog:

Gate Parameter List Examples

nand nor and

or xor xnor

scalable, requires at least

2 inputs(output, input1,

input2, , inputx)

and a1(C,A,B);nand na1(out1,in1,in2,in3,in4);nor #(5)

n1(D,A,B);//delay = 5 time unitsxor #(3,4,5)

x1(E,A,B);//rise,fall,off delaysnor #(3:4:5)

n2(F,A,B);//min:typ:max of delays

not buf (output, input) not inv1(c,a);

notif0bufif0

control signal active

low(output, input,

control)

notif0 inv2(c,a, control);

notif1bufif1

control signal active

high(output, input,

control)

not inv1(c,a, control);

INSTANTIATIONS WITH STRENGTHS:

The four-value logic in Verilog provides an adequate precision for most logic level simulations. The

previous section showed that more precise simulation data can be obtained by using switch level models

for the basic logic level constructs. Another feature of Verilog for a more precise simulation data is signal

63

strength. This section discusses logic strengths and application of this language facility in modeling gate

and switch level circuits.

Verilog allows specification of drive strength for primitive gate output and nets. Gate output or net signal

strength values are specified in a set of parenthesis that include a strength value for logic 0 and one for

logic 1. Allowable drive strengths for logic 0 (i.e., strength0) are supply0, strong0, pull0, weak0, and

highz0. Similarly, allowable strengths for logic 1 (strength1) are supply1, strong1, pull1, weak1, and

highz1. Strength values can appear in any order in the set of parenthesis that follows a primitive name, a

net declaration, or the assign keyword. The default strengths for a gate output or a net are strong0 and

strong1 for logic 0 and logic 1, respectively. Charge strengths, representing the strength of a capacitive

net, are also supported in Verilog. Charge strength values are large, medium, and small.

Gate output drive strengths are specified after the primitive name when the primitive is instantiated. The

example below shows a nand primitive with pull0 and pull1 output strength values.

nand (pull0, pull1) # (3, 5) n1 (w, a, b, c);

STRENGTH CONTENTION WITH TRIREG NETS :

The ability to model varying signal levels as produced by digital hardware is fundamentally important for

the simulation of switch level circuits. This is accomplished by assigning various signal strengths as

defined in Table 1. The signal strengths vary from supply level own to high impedence level, covering

six distinct intermediate levels. Each level can represent a logic 1 (supply1, strong 1 highz1) or a

logic 0 (supply0, strong0 highz0).

Strength Name Strength Level Element Modelled Declaration Abbreviation

Supply Drive 7 Power supply connections. supply

Strong Drive 6 Default gate & assign output strength. strong

Pull Drive 5 Gate & assign output strength. pull

Large Capacitor 4 Size of trireg net capacitor. large

Weak Capacitor 3 Gate & assign output strength. weak

Medium Capacitor 2 Size of trireg net capacitor. medium

Small Capacitor 1 Size of trireg net capacitor. small

High Impedence 0 Not Applicable. highz

64

Table 1 : Signal strength definitions.

Modelling of weak (resistive) transistors :

Weak or resistive transistors have many uses within the domain of digital design. A property associated

with resistive transistors is that any signal passed through one is degraded. This is modelled within

Verilog using signal strengths which are reduced when they encounter resistive transistors. Signals are

degraded as indicated in Table 2.

Input Strength Output Strength

supply pull

strong pull

pull weak

weak medium

large medium

medium small

small small

highz highz

Table 2: Signal degradation through a resistive transistor as

modelled by Verilog

One such occasion where this technique is needed is for the digital latch (Figure 1), where a weak

transistor is used to reinforce the poor logic 1 passed by the transmission gate. The logic 1 imposed by

this weak transistor can however be overcome by the strong logic 0 passed by the transmission gate.

65

Figure 1 : simple latch circuit exhibiting signal contention.

Resolving signal contention :

The situation often arises whereby two signals drive one node in a circuit resulting in signal contention

(Figure 2). The strength and logic value of the two signals are used to resolve the signal conflict to

produce a single logic value and strength on the node.

Three situations can arise.

The signals are logically the same but of different strength (Figure 2a) resulting in the output node having

the same logic value and a strength equal to the strongest input signal.

The signals are of the same strength but logically opposite (Figure 2b) resulting in an unknown signal of

the same strength.

The signals are logically opposite and of different strength (Figure 2c) resulting in an ambiguous signal

66

Figure 2 : a) Similar logic, strength contention.

b) Similar strength, logic contention.

c) Logic and strength contention.

 SYSTEM TASKS, FUNCTIONS, AND COMPILER DIRECTIVES

INTRODUCTION:

A number of facilities in Verilog relate to the management of simulation; starting and stopping of the

simulation, selectively monitoring the activities, testing the design for timing constraints, etc are among

them.

PARAMETERS:

The flexibility of modules calls for two main reasons:

1. They should be adaptable designs conforming to different technologies.

2. They should have scalable features including timing parameters.

Two types of parameters are of use in modules:

1. Parameters related to timings, time delays, rise times are technology specific and used during

simulation.: “specparam” precedes the assignments.

2. Parameters related to design, bus width and register size are of different category and assigned

with keyword called “defparam”.

67

Timing related parameters:

The constructs associated are discussed here through the specific designs:

// half adder

Module ha_1(s,ca,a,b);

Input a,b;

Output s,ca;

Xor#(1,2)(s,a,b);

And#(3,4)(cs,a,b);

End module

Module tstha_1();

Reg a,b;

Wire s,ca;

Ha_1hh(s,ca,a,b);

Intial

Begin

a=0;

b=0;

end

always begin #5 a=1;b=0;

#5 a=0;b=1;

#5 a=1;b=1;

#5 a=0;b=0;

End

Initial monitor($time.”a=%b,b=%b, ca=%b,s=%b”,a,b,ca,s);

Initial #30 $stop;

End module

68

Module parameters:

It is explained by scaling the ALU size

Module alu(d,d,a,b,f,ci);

Parameter msb=3;

Output[msb:0];

Output c;

Wire[msb:0]d;

Input ci;

Input [msb:0]a,b;

Input [1:0]f;

Specify

(a,b=>d)=(1,2);

(a,b,ci*>c)=1;

End specify

Assign {c,d}=(f= = 2’b00)?)a+b+c): ((f= = 2’b01)? (a-b): ((f= = 2’b 10)?{1’bz,a^b}:{1’bz,~a}));

End module

Module tst_alu();

Defparamaa.msb=7; parameter n1=7;

Reg[n1:0]a,b;

Reg ci;

Wire[n1:0]d;

Wire co;

Alu_aa(d,d,a,b,f,ci);

Initial

Begin

69

Ci=1’b0;

F=2’b=00;

A=8’h00;

#30 $stop;

End

Always

Begin

#3 Ci=1’b0;F=2’b=00;A=8’h00;

End

Intial $monitor($time,”c=%b,a=%b,b=%b,f=%b,d=%b,c=%b”,cci,a,b,f,d,c);

End module;

PATH DELAYS:

The time delays are all delays associated with individual operations or activities in a module. They refer

to the basic element in the design. Such path and delays are at the chip or system level are referred to as

“module path delays”

Module paths are specified and values assigned to their delays through specify blocks.

Specify

Specparam rise_time =5, fall_time =6;

(a=>b)=(rise_time, fall_time);

(c=>d)=(6,7);

Endspecify

The pin to pin path of a signal may change depending on the value of another signal. Conditional

selection ans assignment of path delays facilitates such simulations. Behavior level modules can have

signal paths activated following an edge in a different signal. They can be specified in two ways. It may

be specified for positive or negative edge. It may also be specified for rise or fall times. We can assign as

edge sensitive state dependent path”.

All transitions on an input pin with less than a\specified module path delay are termed as pulses.

They are defined as specparam pathpulse$(x,y)=(a,b);

70

MODULE PARAMETERS:

Module parameters are associated with the size of bus, register, memory, ALU and so on. They can be

specified with the concerned module but their values can be altered during instantiation. The alterations

can be brought up through the assignments made up with the defparam. It can appear any where in the

module.

SYSTEM TASKS and FUNCTIONS:

The Verilog which has number of system tasks and functions are used for taking the output from

simulation, control simulation , debugging design modules etc.

$monitor, $display are the main output tasks used for displaying and monitoring.

$ strobe task: when a variable or set of variables is sampled and its value displayed it is used. It senses

the value of specified variable and displays them. It is executed as the last activity in the concerned time

step.

$ stop task suspends the simulation, where as $ finish stops simulation and closes the simulation

environment.

$ random function is used to generate random number of sequences for testing

FILE BASED TASKS and FUNCTIONS:

/LRM has provision to accommodate and integrate design and test modules kept in different files. It

makes room for structuring the design in an elegant manner and developing it with a cross functional

approach. Different facilities are specified in LRM.

To carry out any file based task, the file has to be opened, reading, writing etc. completed and the file

closed. The keywords for all the file based tasks starts with f to differ from other tasks. Eg : $fdisplay,

$fopen

COMPILER DIRECTIVES:

A large number of compiler directives are available in Verilog. They allow for macros, file inclusion,

time scale related parameters for simulation. They are precede by the ‘’ character.

Define directive: it is used for macro substitution. It substitutes macro by text.

Time scale compiler directives allows the time scale to be specified for the design.

71

Timescale a µs/ b ns

$time format the time scale and display format can be changed during the simulation.

HIERARCHICAL ACCESS

A Verilog design will have a module or two at apex level. A number of modules and UDP will be

instantiated within it. They can have other instantiations within them. They can also have tasks and

functions defined within them and can be invoked repeatedly. Verilog has facility to access each such

item uniquely and hierarchically.

Every entity in a design has a unique and hierarchical name. but the automatic tasks or functions cannot

be accessed hierarchically.

Example:

USER-DEFINED PRIMITIVES

The primitives available in the Verilog are all of gate or switch types. Verilog has the provision to define

primitives called user defined primitives and use them. It can be defined anywhere in the source text and

can be instantiated anyway here in the module. Their definition is in the form of a table in a specified

format. They are basically of two types – combinational, sequential.

They respectively are used to define combinational and sequential functions.

Combinational UDP:

A combinational UDP accepts as a set of scalar inputs and gives a scalar output. An inout declaration is

not supported by UDP. The first statement starts with a key word primitive. Input and output are declared

in the body of UDP where as inout is not.

Simple UDP for AND operation:

Primitive udp_and(out,in1,in2);

 A

B C

D E

72

Output out;

Input in1,in2;

Table

// in1 in2 out

 0 0: 0;

 0 1: 0;

 1 0: 0;

 1 1: 1;

End table

End primitive

Sequential UDP:

An sequential circuit has set of steps. A positive or negative going edge can trigger the transition from

one state to the other state of the circuit. A sequential UDP can accommodate all these. It differs from the

combinational UDP in two aspects:\

1. The output has to be defined as a reg. if any change in any of the inputs so demands, the output

can change.

2. Values of all input variables as well as present state of the output can affect the next state of the

output.

The output of UDPs also can take on values with time delays. The delays can be specified separately for

rising and falling transitions on the output.

Example : udp_and_b#(1,2)g1(out.in1,in2);

UDPs are scalar in nature. They can be used with vector with proper declarations; however it may not be

supported by some simulators.

Unit-V

STATE MACHINE CHARTS:

73

 Just as flowcharts are useful in software design, flowcharts are useful in the hardware design of digital

systems. We introduce the SM chart, which is also called an ASM (algorithmic state machine) chart. We

will see that the SM chart offers several advantages over state graphs.

 The state of the system is represented by a state box. The state box contains a state name, followed by a

slash (/) and an optional output list. After a state assignment has been made, a state code may be placed

outside the box at the top. A decision box is represented by a diamond-shaped symbol with true and false

branches. The condition placed in the box is a Boolean expression that is evaluated to determine which

branch to take. The conditional output box, which has curved ends, contains a conditional output list. The

conditional outputs depend on both the state of the system and the inputs. SM chart constructed from SM

blocks.

DERIVATIONOF SM CHARTS:

The method used to derive an SM chart for a sequential control network is similar to that used to derive

the state graph. We should draw a block diagram of the system we are controlling. Next we should define

the required input and output signals to the control network. Then we can construct an SM chart that tests

the input signals and generates the proper sequence of output signals.

REALIZATION OF SM CHARTS:

 Methods used to realize SM charts are similar to the methods used to realize state graphs. As with any

sequential network, the realization will consist of a combinational subnetwork, together with flip-flops

for storing the state of the network. If the number of states in an SM chart can be reduced, it is not

always desirable to do so, since combining states may make the SM chart more difficult to interpret.

The logic equations for the multiplier control are

 A+ =A’BM’K+A’BM+AB’K=A’B(M+K)+AB’K

 B+ =A’B’ST+A’BM’ (K’+K)+AB’(K’+K)=A’B’St+A’BM’+AB’

 Load = A’B’St

 St = A’BM(K’+K)+AB’(K’+K)=A’BM’+AB’

 Ad =A’BM’

 Done =AB

PLA Table for Multiplier Control:

 A B St M K A+ B+ Load St Ad Done

S0 0 0 0 - - 0 0 0 0 0 0

 0 0 1 - - 0 1 1 0 0 0

S1 0 1 - 0 0 0 1 0 1 0 0

74

 0 1 - 0 1 1 1 0 1 0 0

 0 1 - 1 - 1 0 0 0 1 0

S2 1 0 - - 0 0 1 0 1 0 0

 1 0 - - 1 1 1 0 1 0 0

S3 1 1 - - - 0 0 0 0 0 1

 0 1 0 1 0 1 0 0 0 1 0

 0 1 0 1 1 1 0 0 0 1 0

 0 1 1 1 0 1 0 0 0 1 0

 0 1 1 1 1 1 0 0 0 1 0

IMPLEMENTATION OF THE DICE GAME:

 We realize the SM chart for the dice game using a PLA and three D flip-flops. We use a straight binary

state assignment. The PLA has 9 inputs and 7 outputs.

ALTERNATIVE REALIZATIONS FOR SM CHARTS USING MICROPROGRAMMING:

In applications where the number of inputs to the control network is large, the number of inputs to the

PLA, ROM, or PAL will be large. Several methods can be used to reduce the number of inputs required.

These methods generally require more states in the SM chart and more output functions to be realized.

LINKED STATE MACHINES:

When a sequential machine becomes large and complex, it is desirable to divide the machine up into

several smaller machines that are linked together. Each of the smaller machines is easier to design and

implement. Also, one of the submachines may be “called” in several different places by the main

machine. This is analogous to dividing a large software program into procedures that are called by the

main program.

1.Explain Dice game with block diagram.

1. Explain Dice game using flow chart.

3. Explain SM chart for Dice game.

1. Design state graph for Dice game controller.

5. Explain about XC4000 implementation of multiplier control.

6.Write differences between FPGA and CPLD.

 7. Explain PLA realization of SM charts.

 8. Explain PLA table for multiplier control.

DESIGNING WITH PROGRAMMABLE GATE ARRAYS AND COMPLEX

PROGRAMMABLE LOGIC DEVICES

75

Xilinx 3000 series FPGAs:

 As an example of a FPGA, we will describe the Xilinx XC3020 Logic Cell Array (LCA). Which

consists of an interior array of 64 configurable logic blocks (CLBs) surrounded by a ring of 64 input-

output interface blocks. The interconnections between these blocks can be programmed by storing data in

internal configuration memory cells. Each configurable logic blocks contains some combinational logic

and two D flip-flops and can be programmed to perform a variety of logic functions.

 INPUT-OUTPUT BLOCKS:

The I/O pad connects to one of the pins on the IC package so that external signals can be input to or

output from the array of logic cells.

PROGRAMMABLE INTERCONNECTS:

The programmable interconnections between the configurable logic blocks and I/O blocks can be made in

several ways –general purpose interconnections, direct interconnects, and long lines.

DESIGNING WITH FPGAS:

Sophisticated CAD tools are available to assist with the design of systems using programmable gate

arrays. When the final system is built, the bit pattern for programming the FPGA is normally stored in an

EPROM and automatically loaded into the FPGA when the power is turned on.

USING A ONE-HOT STATE ASSIGNMENT:

 When designing with PGAs, We should keep in mind that each logic cell contains two flip-flops. This

means that it may not be important to minimize the number of flip-flops used in the design. We should

try to reduce the total number of logic cells used and try to reduce the interconnections between cells.

Using a one-hot state assignment will often help to accomplish this. The one-hot assignment uses one

flip-flop for each state, so a state machine with N states requires N flip-flops.

ALTERA COMPLEX PROGRAMMABLE LOGIC DEVICES (CPLDS):

CPLDs are an extension of the PAL concept. A CPLD consists of a number of PAL-like logic blocks

together with a programmable interconnect matrix. Each PAL-like logic block has a programmable AND

array that feeds macrocells, and the outputs of these macrocells can be routed to the inputs of other logic

blocks within the same IC. Many CPLDs are electrically erasable and reprogrammable and, as such are

sometimes referred to as EPLDs (erasable PLDs). The Altera MAX 7000 series is a family of high-

performance CMOS CPLDs. In contrast to the Xilinx FPGAs, the Altera 7000 series uses EEPROM

based configuration memory cells, so that once the configuration is programmed, it is retained until it is

erased.

ALTERA FLEX 10K SERIES CPLDS:

 The Altera FLEX 10K embedded programmable logic family provides high-density logic along with

RAM memory in each device. The logic and interconnections are programmed using configuration

76

RAM cells in a manner similar to the Xilinx FPGAs. Each row of the logic array contains several

logic array blocks (LABs) and an embedded array block (EAB). Each LAB contains eight logic

elements and local interconnect channel. The EAB consists 2048 bits of RAM memory.

STATIC RAM MEMORY:

Static RAM means that once the data is stored in the RAM, it remains there until the power is turned off.

Static RAMs are used to store several million bytes of data.

A SIMPLIFIED 486 BUS MODEL:

A 486 bus model is very complex and supports many different types of bus cycles. A quick data transfer

is also supported by it.

INTERFACING MEMORY TO A MICROPROCESSOR BUS:

In order to design the interface, timing specifications of memory and microprocessor has to be satisfied.

The set-up and hold time specifications must also be satisfied. If the memory is slow, it may be necessary

to insert wait states in the bus cycle.

SERIAL COMMUNICATION INTERFACE DESIGN:

The serial communication interface, which receives and transmits serial data is called UART (universal

Asynchronous Receiver-Transmitter). It is used to communicate with devices such as mouse, keyboard

etc.,

15. ADDITIONAL TOPICS

Shall be provided later, as this has a revised syllabus and the course content is to be studied in details.

77

16. University previous Question papers

78

17. Question Bank

UNIT1:

1) Explain programming language interface

2) Explain levels of design description

3) Explain simulation and synthesis with differences

4) Write about system tasks with examples?

5) Mention keywords and their significance?

6) Explain data types of Verilog

7) Explain the following (a) scalars and vectors (b) parameters (c) white space

8) Explain operator in Verilog.

9) Explain system tasks.

UNIT II:

1) Explain gate level modeling with example?

2) Design half adder using gate level modeling?

3) Design full adder using gate level modeling?

4) Design full adder using half adder using gate level modeling?

5) Explain delays with an example

6) Explain net types

7) Design d flip flop with gate primitives

8) Explain tri state gates

9) Write about module structure

10) Write the Verilog program for 2 bit comparator in gate model?

11) Write about continuous assignment structures

12) Explain assignment to vectors

13) Explain delays with a program

14) Design half adder using data flow modeling?

15) Design full adder using data flow modeling?

16) Design full adder using half adder using data flow modeling?

17) Write the Verilog code for cmos NOR in data flow model

18) Write the Verilog code for nmos NOR in data flow model

19) Write the Verilog code for cmos NAND in data flow model

UNIT III

1) Explain operators in data flow?

2) Explain wait construct with an example

3) Explain force release construct with an example

79

4) Explain forever loop

5) Explain the difference between blocking and non blocking assignments

6) Explain repeat construct

7) Explain design at behavioral levels

8) Explain if and else if constructs

9) Explain case statement with a program

10) Write about simulation flow?

UNIT IV

1) Explain basic transistor switches.

2) Explain CMOS switches

3) Write the Verilog code for cmos NOR in switch level model

4) Write the Verilog code for nmos NOR in switch level model

5) Write the Verilog code for cmos NAND in switch level model

6) Explain parameters

7) Explain path delays

8) Explain file based tasks with an examples

9) Explain hierarchical access with a program

10) Explain system based tasks and functions

11) Explain sequence detector with fsm program

12) What are user defined primitives

13) What are complier directives

14) Explain module parameters

Unit- V

1.Explain Dice game with block diagram.

2. Explain Dice game using flow chart.

3. Explain SM chart for Dice game.

2. Design state graph for Dice game controller.

5. Explain about XC4000 implementation of multiplier control.

6.Write differences between FPGA and CPLD.

 7. Explain PLA realization of SM charts.

 8. Explain PLA table for multiplier control.

80

18. Assignment topics
 UNIT 1:

1) Explain programming language interface

2) Explain levels of design description

3) Explain simulation and synthesis with differences

4) Explain data types of Verilog

5) Explain the following (a) scalars and vectors (b) parameters (c) white space

6) Explain operator in Verilog.

 UNIT 2:

1) Design full adder using gate level modeling

2) Explain net types

3) Design d flip flop with gate primitives

4) Explain tri state gates

5) Design full adder using data flow modeling?

6) Design full adder using half adder using data flow modeling?

 UNIT 3

1) Explain operators in data flow?

2) Explain wait construct with an example

3) Explain the difference between blocking and non blocking assignments

4) Explain repeat construct

5) Explain design at behavioral levels

6) Write about simulation flow?

UNIT 4

1) Explain basic transistor and CMOS switches.

2) Write the Verilog code for cmos NOR, nmos NOR, cmos NAND in switch level model

3) Explain parameters and path delays

4) Explain hierarchical access with a program

5) Explain system based tasks and functions

6) What are user defined primitives

7) What are complier directives

UNIT 5

1.Explain Dice game with block diagram.

Explain Dice game using flow chart.

81

2.Explain SM chart for Dice game.

Design state graph for Dice game controller.

3.Explain about XC4000 implementation of multiplier control.

Write differences between FPGA and CPLD.

4.Explain PLA realization of SM charts.

Explain PLA table for multiplier control.

19. Unit-wise quiz questions and long answer questions

Feb 2015 Mid-1 Quiz Paper

1 In Verilog constants defined in a module by the keyword

A) Constant B) Parameter C) Const D) None

[C]

2 How many logic values defined in Verilog with their strength’s

A) One B) Two C) Three D) Four

[B]

3 Trireg nets can have _________________ values.

A) 0, 1, x, z B) 0, 1, z only C) 0, 1, x only D) 0, 1 only

[C]

4 An escaped indetifier should start with a _____________.

A)* B) $ C) \ D) white space

[C]

5 _____________ is an array of reg variables.

A) Data type B) String C) Vector D) Memory

[D]

6 Special characters can be displayed in strings only when they are preceded by

A) Null characters B) Escape characters C) Variable D)None

[B]

7 $stop is used for

A) Break point B) Start point C) Initial point D) Terminate the program

[A]

8 String can be stored in

A) Wire B) Data C) Reg D) None

[B]

9 Which of the following is not an white space character

A) \t B) \n C) \b D) \s

[D]

10 ‘time’ is an example of ______________ data type.

A) Fixed B) Variable C) Net D) Dataflow

[B]

11 Process of converting a high – level description of design into an optimized gate level

representation is called logic synthesis.

12 Event based timing control is possible with behavioral modeling

13 Implicit continuous assignment of delay can be used in data flow modeling.

14 >> is the symbol of logical right shift operator.

15 What first character identifies a system task or a system function $.

16 To represent physical connection between structural elements net data type can be used.

17 Delay associated with a gate output transition to a ‘0’ from another value is called fall time

delay.

18 Write the syntax for repeat construct? ___________

19 Give an example for scalar-net data type representation wire x; .

20 Verilog HDL was first developed by Gateway Automation .

82

UNIT 1:

1. ASIC stands for Application specific integrated circuits

2. Verilog has same code for test bench and design

3. Simulation at uniform levels obtains concurrency

4. Testing is done in Functional Test and Timing Test.

5. The names of system tasks and functions begin with a dollar Sign ($)

Timescale tasks are $printtimescale and $timeformat

6. Declaration of mode, type, and size of ports can either appear in the portlist

7. IFverifies conditional statements.

8. A block comment begins with the two characters

9. Constants in Verilog are integer or real

1. Verilog has _____for test bench and design

a) Different code

b) Same code

c) No code

d) None of the above

2. A block comment begins with

a) /

b) //

c) !!

d) --:

 3. simulation at uniform levels obtains____

 a) non persistence

 b) loops

 c) concurrency

 d) synthesis

UNIT 2

1. cells used for gate level simulation, or what is called as SDF simulation

2. Verilog gate level list includes standard n_input, n_output, and tri-state gates

3. A module is comprised of the interface and the design behavior

4. All module declarations must begin with the module

5. If there is no instantiation inside the module, it will be treated as a top-level module.

6. Transmission gates tran and rtran are permanently on and do not have a control line

7. Verilog basic logic gates are called primitives

8. Delays specify a time in which assigned values propagate through nets or from inputs to outputs

of gates

9. The delays declaration can contain up to three values: rise, fall, and turn-off delays

10. Strengths can be used to resolve which value should appear on a net or gate output.

11. All strengths can be ordered by their value

12. Nets are data types that can be used to model physical connections

file:///dollar

83

13. The 't' variable is trireg net variable with small charge strength

14. Nets can be declared in a net declaration statement or in a net declaration assignment

15. If a net variable has no driver, then it has a high-impedance value

16. Dataflow modeling provides a powerful way to implement a design

17. Delay value control the time between the change in a right-hand-side operand and when the new

value is assigned to the left-hand-side

18. Vectors can be declared for all types of net data types and for reg data types

19. Vector nets and registers are treated as unsigned values

20. Verilog uses a 4-value logic value

21. The delay operator has one subtle side effect: it swallows narrow input pulses

22. The signals are logically opposite and of different strength resulting in an ambiguous signal

23. Parameters related to timings, time delays, rise times are technology specific and used during

simulation.: “specparam” precedes the assignments

24. Allowable drive strengths for logic 0 (i.e., strength0) are supply0, strong0, pull0, weak0, and

highz0

25. delay operator causes the output response of a gate to be delayed a certain amount of time

UNIT 3:

1. level of abstraction is often referred to as the behavioral level

2. Procedural bodies do provide mechanisms for specification of timing

3. Functions provide a means of splitting code into small parts that are frequently used in a model.

4. Functions can only be declared inside a module declaration.

5. Any expression can be used as a function call argument

6. Another form of delay specification in procedural statements is intra assignment delay

7. The wait statement is used as a level-sensitive control.

8. The processor waits when the expression is FALSE.

9. When the expression is TRUE, the statement is executed.

10. When the start expression is TRUE, the go signal toggles after 10 time units

11. An event sensitive process is triggered by the edge on a control signal, while a level sensitive

process is triggered by the value on the control signal

12. The wait statement can be used to: Synchronise concurrent processes

13. The block statements provide a means of grouping two or more statements in the block.

14. The behavior level is used to describe a system intuitively.

15. The behavior-level description includes an initial statement and thus it is not synthesizable.

UNIT 4:

1. The tran switch acts as a buffer between the two signals inout1 and in-out2

2. Verilog Provides in-built primitives for basic gate and switch level modeling

3. Transmission gates are bi-directional and can be resistive or non-resistive

4. The delay operator has one subtle side effect: it swallows narrow input pulses

5. The signals are logically opposite and of different strength resulting in an ambiguous signal

84

6. Parameters related to timings, time delays, rise times are technology specific and used during

simulation.: “specparam” precedes the assignments

7. The logic 1 imposed by this weak transistor can however be overcome by the strong logic 0

passed by the transmission gate.

8. The ability to model varying signal levels as produced by digital hardware is fundamentally

important for the simulation of switch level circuits

9. Allowable drive strengths for logic 0 (i.e., strength0) are supply0, strong0, pull0, weak0, and

highz0

10. delay operator causes the output response of a gate to be delayed a certain amount of time

11. path and delays are at the chip or system level are referred to as “module path delays”

12. Module paths are specified and values assigned to their delays through specify blocks

13. The pin to pin path of a signal may change depending on the value of another signa

14. All transitions on an input pin with less than a\specified module path delay are termed as pulses l

15. Module parameters are associated with the size of bus, register, memory

16. The alterations can be brought up through the assignments made up with the defparam

17. $monitor, $display are the main output tasks used for displaying and monitoring

18. A Verilog design will have a module or two at apex level

19. Every entity in a design has a unique and hierarchical name

20. Bigger designs are better arranged in small functional blocks

21. UDP is a user defined primitive

22. A function is like a subroutine or a procedure in the program

23. a function has only input argument

24. The primitives available in the Verilog are all of gate or switch types

25. A combinational UDP accepts as a set of scalar inputs and gives a scalar output

Unit 5

1) In digital circuits , storage of data is done either by feedback or by gate capacitances that are

refreshed frequently.

2) Feedback models and capacitive models are technology dependent.

3) Verilog provides timing check constructs for ensuring correct operation of implicit modeling.

4) A sequential UDP has the format of the combinational UDP except that its inputs, outputs and

present state is also specified.

5) Q = d; q_b = ~d; are blocking assignments.

6) Q <= d; q_b <= ~d; are non-blocking assignments.

7) With each clock edge, the entire procedural block is executed once from begin to end.

8) A fork-join bracketing instead of begin-end causes all sequential statements to be executed in

parallel.

9) A sequential assign statement forces a value into reg type variable, and a sequential deassign

removes it.

10) Setup time is the minimum necessary time that a data input requires to setup before it is clocked

into a flip-flop.

11) Hold time is the minimum necessary time that a flip-flop data must stay stable after it is clocked.

12) $readmemh and $readmemb tasks are for reading external data files and using them for

initialization of memory blocks.

13) An inout bus is only considered as net and cannot be declared as a reg.

85

14) Verilog PLA modeling tasks use a personality memory whose contents determine PLA fusing.

15) A register is a group of flip-flops with a common clock.

16) A moore machine is a state machine in which all outputs are fully synchronized with the circuit

clock.

17) In a mealy machine, its output depends on its current state and inputs.

18) Verilog simulation environment provide tools for graphical or textual display of simulation

results.

19) A Verilog testbench is a Verilog module that instantiates an MUT applies data to it and monitors

its output.

20) Testing sequential circuits involves synchronization of circuit clock with other data inputs.

21) $stop and $finish are simulation control tasks.

22) Formal verification is a way of automating design verication by eliminating testbenches and

problems associated with their data generation and response observation.

23) The assert_one_hot assertion monitor checks that while the monitor is active only one bit of its

n-bit expression is 1.

24) The assert_cycle_sequence is a very useful assertion for verifying state machines.

25) A useful assertion for checking expected events or events implied by other events is the

assert_implication assertion.

26) Assert_next assertion verifies that starting and an ending events occur with a specified number of

clocks in between.

27) In assertion verification, in-code monitors take the responsibility of issuing a message if

something happens that is not expected.

20. Tutorial Problems:

Shall be provided later, as this has a revised syllabus and the course content is to be studied in details.

21. Known Curriculum Gaps and inclusion of the same in the lecture

schedule:

Shall be provided later, as this has a revised syllabus and the course content is to be studied in details.

22. Group discussion topics

Shall be provided later.

23. References, Journals, websites and E-links

REFERENCES:

86

1. Fundamentals of Logic Design with Verilog Design– Stephen. Brown and Zvonko Vranesic, TMH,

2nd Edition 2010.

2. Advanced Digital Logic Design using Verilog, State Machine & Synthesis for FPGA – Sunggu

Lee, Cengage Learning , 2012.

3. Verilog HDL – Samir Palnitkar, 2nd Edition, Pearson Education, 2009.

4. Advanced Digital Design with Verilog HDL – Michael D. Ciletti, PHI, 2009.

WEBSITES

1. http://onlinelibrary.wiley.com/doi/10.1002/9780470823798.app1/pdf

2. http://verilog.renerta.com/source/vrg00047.htm

3. http://electrosofts.com/verilog/beginend.html

4.http://www.ee.iitb.ac.in/student/~vivektiru/img/Verilog.pdf

JOURNALS

1. www.mcjournal.com (web journal on VLSI)

2. Microprocessors and Microcomputer System

3. VLSI Hardware Desig

24. Quality Control Sheets

A. Course End Survey:

Course end survey will be collected at the end of the semester.

B. Teaching Evaluation

Quality control department conducts online feedback, two times in the semester.

25. Students list

ECE – 2-1A

S.No Roll Number Name of the Candidate

1 14R11A0401 ADITYA B

2 14R11A0402 ADULLA JANARDHAN REDDY

3 14R11A0403 ANDE HEMANTH REDDY

4 14R11A0404 ANKATI NAVYA

5 14R11A0405 ASHFAQ AZIZ AHMED

6 14R11A0406 BANDI SANDHYA

7 14R11A0407 BASWARAJ SHASHANK YADAV

8 14R11A0408 BITLA SRIKANTH REDDY

9 14R11A0409 BUDDANA DHARANI KUMAR

10 14R11A0410 CHEBARTHI RAMYA GAYATHRI

11 14R11A0411 CHETLAPALLI NAGA SAI SUSHMITHA

http://onlinelibrary.wiley.com/doi/10.1002/9780470823798.app1/pdf
http://verilog.renerta.com/source/vrg00047.htm
http://electrosofts.com/verilog/beginend.html
http://www.ee.iitb.ac.in/student/~vivektiru/img/Verilog.pdf

87

12 14R11A0412 DASARI DHAMODHAR REDDY

13 14R11A0413 G AYESHA SULTANA

14 14R11A0414 G MADHURI

15 14R11A0415 G RISHI RAJ

16 14R11A0416 G VAMSHI KRISHNA

17 14R11A0417 G VENKATESH YADAV

18 14R11A0418 GONDA RISHIKA

19 14R11A0419 GUDE GOPI

20 14R11A0420 JAGGANNAGARI MANOJKUMAR REDDY

21 14R11A0421 JAGGARI SRINIJA REDDY

22 14R11A0422 JALAGAM NANDITHA

23 14R11A0423 JAMMIKUNTLA SHIVA CHARAN

24 14R11A0424 JATAPROLU LAKSHMI SOWMIKA

25 14R11A0425 JEKSANI SHREYA

26 14R11A0426 K VIJAY KUMAR

27 14R11A0427 KAALISETTY KRISHNA CHAITANYA

28 14R11A0428 KAKARLA MOUNICA

29 14R11A0429 KARRE PRIYANKA

30 14R11A0430 KL N SATYANARAYANA MURTHY

31 14R11A0431 KONDA KRITISH KUMAR

32 14R11A0432 KOPPULA RAHUL

33 14R11A0433 KURUGANTI RUNI TANISHKA SHARMA

34 14R11A0434 L THRILOK

35 14R11A0435 MANDULA SANTOSHINI

36 14R11A0436 MATLA PRINCE TITUS

37 14R11A0437 NARSETTI SAIPRAVALIKA

38 14R11A0438 NIKITHA RAGI

39 14R11A0439 P VIJAYA ADITYA VARMA

40 14R11A0440 PASHAM VIKRAM REDDY

41 14R11A0441 PELLURI KARAN KUMAR

42 14R11A0442 PERURI CHANDANA

43 14R11A0443 PODUGU SRUJANA DEVI

44 14R11A0444 RAJNISH KUMAR

45 14R11A0445 RAJU PAVANA KUMARI

46 14R11A0446 RAMIDI NITHYA

47 14R11A0447 RAMOJI RAJESH

48 14R11A0448 S ALEKHYA

49 14R11A0449 SARANGA SAI KIRAN

50 14R11A0450 SHAIK SAMEER ALI

51 14R11A0451 SOUMYA MISHRA

52 14R11A0452 SRIRAMOJU MANASA

53 14R11A0453 T ARUN KUMAR

54 14R11A0454 T S SANTHOSH KUMAR

88

55 14R11A0455 V BAL RAJ

56 14R11A0456 V POOJA

57 14R11A0457 V SRIVATS VISHWAMBER

58 14R11A0458 VEMI REDDY VISHNU VARDHAN REDDY

59 14R11A0459 VENNAMANENI VAMSI KRISHNA

60 14R11A0460 YERASI TEJASRI

61 15R15A0401 RAMIDI SANDEEP REDDY

62 15R15A0402 ODDARAPU HARISHBABU

63 15R15A0403 KOLUKURI BHARGAVI

64 15R15A0404 ADEPU MOUNIKA

65 15R15A0405 AVANCHA PRAVALIKA

66 15R15A0406 NELLUTLA VISHAL CHAITANYA

67 15R15A0407 VEMUNA JAMEENA

ECE -2-1B

S.No Roll Number Name of the Candidate

1 14R11A0461 ADDAKULA SURESH

2 14R11A0462 AGARTI MADHU VIVEKA

3 14R11A0463 AKULA SAI KIRAN

4 14R11A0464 ANUMULA SNIGDHA

5 14R11A0465 B DIVYA

6 14R11A0466 B MANOHAR

7 14R11A0467 BANDARI MAMATHA

8 14R11A0468 BINGI DIVYA SUDHA RANI

9 14R11A0469 BIRE BHAVYA

10 14R11A0470 CH SAI BHARGAVI

11 14R11A0471 CHAVALI SUMA SIREESHA

12 14R11A0472 CHELLABOINA SHIVA KUMAR

13 14R11A0473 CHETTY AKHIL CHAND

14 14R11A0474 CHINTAPALLI MADHAV REDDY

15 14R11A0475 CHIVUKULA VENKATA SUBRAMANYA PRASANTH

16 14R11A0476 D NAGA SUMANVITHA

17 14R11A0477 D VAMSI

18 14R11A0478 DHARMENDER KEERTHI

19 14R11A0479 EADARA NAGA SIRISHA

20 14R11A0480 ERANKI SAI UDAYASRI ALAKANANDA

21 14R11A0481 GANGA STEPHEN RAVI KUMAR

22 14R11A0482 GUNDAM SHRUTHI

23 14R11A0483 GUNDREVULA SAMEERA

24 14R11A0484 K NAGA REKHA

25 14R11A0485 KANDADI VARSHA

26 14R11A0486 KURELLI SAI VINEETH KUMAR GOUD

27 14R11A0487 MADDIKUNTA SOMA SHEKAR REDDY

28 14R11A0488 MAMILLA SAI NISHMA

89

29 14R11A0489 MARELLA NAGA LASYA PRIYA

30 14R11A0490 MARKU VENKATESH

31 14R11A0491 MOHAMED KHALEEL

32 14R11A0492 MOHAMMED WASEEM AKRAM

33 14R11A0493 MOTURI DIVYA

34 14R11A0494 MUDIUM KOUSHIKA

35 14R11A0495 MYLAPALLI RAMBABU

36 14R11A0496 NAGU MOUNIKA

37 14R11A0497 NEELAM SNEHANJALI

38 14R11A0498 NIDAMANURI VENKATA VAMSI KRISHNA

39 14R11A0499 NIKHIL KUMAR N

40 14R11A04A0 ORUGANTI HARSHINI

41 14R11A04A1 PARAMKUSAM NIHARIKA

42 14R11A04A2 PASAM ABHIGNA

43 14R11A04A3 PATI VANDANA

44 14R11A04A4 PODISHETTY MANOGNA

45 14R11A04A5 PONAKA SREEVARDHAN REDDY

46 14R11A04A6 R NAVSHETHA

47 14R11A04A7 R PRANAY KUMAR

48 14R11A04A8 RAMIDI ROJA

49 14R11A04A9 RUDRA VAMSHI

50 14R11A04B0 S SHARAD KUMAR

51 14R11A04B1 SAGGU SOWMYA

52 14R11A04B2 TADELA SARWANI

53 14R11A04B3 THOTA SAI BHUVAN

54 14R11A04B4 VALLAPU HARIKRISHNA

55 14R11A04B5 VECHA PAVAN KUMAR

56 14R11A04B6 Y SAI VISHWANATH

57 15R15A0408 ERUKALA NIKITHA

58 15R15A0409 PUNGANUR JAYACHANDRA BHARATHWAJ

59 15R15A0410 GALIPALLY BHARGAVA

60 15R15A0411 PADMA ARUNRAJ

61 15R15A0412 JAMALAPURAM NAVEEN

62 15R15A0413 MACHANNI BALAKRISHNA YADAV

63 15R15A0414 ANABOINA MAHENDER

64 15R15A0415 ANABOINA SHIVA SAI

65 15R15A0416 VEMULA VINITHA

66 15R15A0417 CHEVU NAGESH

ECE – 2-1C

S.No Roll Number Name of the Candidate

1 14R11A04B9 ANAMALI REETHIKA

2 14R11A04C0 ARUMILLI LEKYA

3 14R11A04C1 ARUMUGAM ASHWINI

90

4 14R11A04C2 BASAVARAJU MEGHANA

5 14R11A04C3 BEERAM TEJASRI REDDY

6 14R11A04C4 BHARAT SAKETH

7 14R11A04C5 BOMMANA HARIKADEVI

8 14R11A04C6 BYRAGONI ROJA

9 14R11A04C7 CANDHI SHASHI REKHA

10 14R11A04C8 CH RENUKA

11 14R11A04C9 CHAGANTI MOUNICA

12 14R11A04D0 CHITTARLA LOKESH GOUD

13 14R11A04D1 D LAVANYA

14 14R11A04D2 D MANIKANTA

15 14R11A04D3 DASARI VENKATA NAGA SAISH

16 14R11A04D4 DODDA MANOJ

17 14R11A04D5 E RAHUL CHOWDHARY

18 14R11A04D6 GOWRISHETTY VINEETHA

19 14R11A04D7 GUNTUPALLI RAVI TEJA

20 14R11A04D8 K L ANUSHA

21 14R11A04D9 K SASIDHAR

22 14R11A04E0 KANAKA RAMYA PRATHIMA

23 14R11A04E1 KASTURI SHIVA SHANKER REDDY

24 14R11A04E2 KODHIRIPAKA DHENUSRI

25 14R11A04E3 KOLA AISHWARYA

26 14R11A04E4 KONDOJU AKSHITHA

27 14R11A04E5 KOUDAGANI ALEKHYA REDDY

28 14R11A04E6 KUMMARIKUNTA PRASHANTH

29 14R11A04E7 KURVA SAI KUMAR

30 14R11A04E8 M AJAY KRISHNA

31 14R11A04E9 M MRIDULA GAYATRI

32 14R11A04F0 MANGALAPALLI SRAVANTHI

33 14R11A04F1 MERUGU PALLAVI

34 14R11A04F2 MITHIN VARGHESE

35 14R11A04F3 MOHD EESA SOHAIL

36 14R11A04F4 MUCHUMARI HARSHA VARDHAN REDDY

37 14R11A04F5 MUNUGANTI PRADHYUMNA

38 14R11A04F6 N DURGA RAJU

39 14R11A04F7 N SAKETH

40 14R11A04F8 N SANDHYA

41 14R11A04F9 NALLAGONI SRAVANTHI

42 14R11A04G0 P MANMOHAN SHASHANK VARMA

43 14R11A04G1 PRABHALA SRUTHI

44 14R11A04G2 PRAYAGA VENKATA SATHYA KAMESWARA PAV

45 14R11A04G3 R SAILESH

46 14R11A04G4 SAMBANGI POOJA

91

47 14R11A04G5 SAMEENA

48 14R11A04G6 SANGOJI SAI CHANDU

49 14R11A04G7 SURANENI NAMRATHA

50 14R11A04G8 TADAKAPALLY VIVEK REDDY

51 14R11A04G9 THUMUKUMTA VAMSHI TEJA

52 14R11A04H0 TIRUNAGARI SRAVAN KUMAR

53 14R11A04H1 TRIPURARI SOWGANDHIKA

54 14R11A04H2 TUNIKI MADHULIKA REDDY

55 14R11A04H3 U SAI MANASWINI

56 14R11A04H4 VAIDYA KEERTHI MALINI

57 14R11A04H5 VANGETI PRAVALLIKA

58 14R11A04H6 VASIREDDY VENKATA SAI

59 14R11A04H7 VELDURTHY SAI KEERTHI

60 14R11A04H8 WILSON DAVIES

61 15R11A0418 KOTA RAJESH

62 15R11A0419 N MOUNIKA

63 15R11A0420 ARTHI SHARMA

64 15R11A0421 RAJPET SHIRISHA

65 15R11A0422 MALOTH RAMESH NAIK

66 15R11A0423 PAILLA PREM RAJ REDDY

ECE – 2-1D

S.No Roll Number Name of the Candidate

1 14R11A04H9 A SHIRISHA

2 14R11A04J0 ABHIJEET KUMAR

3 14R11A04J1 ADULLA PRANAV REDDY

4 14R11A04J2 AINAPARTHI SAIVIJAYALAKSHMI SANDHYA

5 14R11A04J3 AMBATI SHIVA SAI

6 14R11A04J4 ANU PRASAD

7 14R11A04J5 B SAI APOORVA

8 14R11A04J6 B SRI KRISHNA SAI KIREETI

9 14R11A04J7 CHITTOJU LAKSHMI NARAYANAMMA

10 14R11A04J8 CHOWDARAPALLY SANTOSH KUMAR

11 14R11A04J9 D SAHITHI

12 14R11A04K0 DEVULAPALLI SAI CHAITANYA SANDEEP

13 14R11A04K1 DUSARI ANUSHA

14 14R11A04K2 GOLLAPUDI SRIKETH

15 14R11A04K3 GOLLIPALLY TEJASREE

16 14R11A04K4 GOUTE SHRAVAN KUMAR

17 14R11A04K5 GUDA PRATHYUSHA REDDY

18 14R11A04K6 JUNNU RAVALI

19 14R11A04K7 K DEVI PRIYANKA

20 14R11A04K8 KANDULA MANI

21 14R11A04K9 KARRA AVINASH

92

22 14R11A04L0 KASULA PRADEEP GOUD

23 14R11A04L1 KOMARAKUNTA SHASHANK

24 14R11A04L2 KOTHAKOTA PHANI RISHITHA

25 14R11A04L3 MADHADI NIKHIL KUMAR REDDY

26 14R11A04L4 MANDUMULA RAGHAVENDRA

27 14R11A04L5 MOHD HAMEED

28 14R11A04L6 MOHD SHAMS TABREZ

29 14R11A04L7 MORSU GANESH REDDY

30 14R11A04L8 MUKKERA VARUN

31 14R11A04L9 NAGULAPALLY MANOHAR REDDY

32 14R11A04M0 NAMBURI LAKSHMI MANJUSHA

33 14R11A04M1 NIROGI SURYA PRIYANKA

34 14R11A04M2 NUNE SAI CHAND

35 14R11A04M3 PALLETI SUSHMITHA

36 14R11A04M4 PANCHAYAT SHAMILI

37 14R11A04M5 POOSA JAI SAI NISHANTH

38 14R11A04M6 PRANAV RAJU A

39 14R11A04M7 RAYCHETTI CHANDRASENA

40 14R11A04M8 REBBA BHAVANI

41 14R11A04M9 S BHARATH SAGAR

42 14R11A04N0 S V M SURYA TEJASWINI

43 14R11A04N1 SAMA MANVITHA REDDY

44 14R11A04N2 SHAMALA MEGHANA

45 14R11A04N3 SMITHA KUMARI PATRO

46 14R11A04N4 T L SARADA RAMYA KAPARDHINI

47 14R11A04N5 T VINAY KUMAR

48 14R11A04N6 TABELA OMKAR

49 14R11A04N7 TADACHINA SAINATH REDDY

50 14R11A04N8 VANGA MOUNIKA

51 14R11A04N9 VARRI PRASHANTHI

52 14R11A04P0 VASARLA SAI TEJA

53 14R11A04P1 VISHWANATHAM ANUSHA

54 14R11A04P2 Y SRI SAI ADITYA

55 14R11A04P3 YAKKALA ASHIKA

56 14R11A04P4 YALAVARTHY MAHIMA

57 14R11A04P5 YALLAPRAGADA SAI TEJASRI

58 14R11A04P6 YARASI SAI RAMYA REDDY

59 14R11A04P7 S TARUN

60 15R15A0424 ARURI REJENDER

61 15R15A0425 KALALI BHAVANI

62 15R15A0426 JANUGANI SAI KRISHNA

63 15R15A0427 SATHENDER KUMAR YADAV

64 15R15A0428 KADEM PRAVEEN

93

65 15R15A0429 ARROJU AKHIL

66 15R15A0430 CH POOJA

67 15R18A0401 G SHREEHARSHA REDDY

26. Group-wise students list for discussion topic:

ECE – 2-1A

S.No Roll Number Name of the Candidate Groups No.

1 14R11A0401 ADITYA B

G-1

2 14R11A0402 ADULLA JANARDHAN REDDY

3 14R11A0403 ANDE HEMANTH REDDY

4 14R11A0404 ANKATI NAVYA

5 14R11A0405 ASHFAQ AZIZ AHMED

6 14R11A0406 BANDI SANDHYA

G-2

7 14R11A0407 BASWARAJ SHASHANK YADAV

8 14R11A0408 BITLA SRIKANTH REDDY

9 14R11A0409 BUDDANA DHARANI KUMAR

10 14R11A0410 CHEBARTHI RAMYA GAYATHRI

11 14R11A0411 CHETLAPALLI NAGA SAI SUSHMITHA

G-3

12 14R11A0412 DASARI DHAMODHAR REDDY

13 14R11A0413 G AYESHA SULTANA

14 14R11A0414 G MADHURI

15 14R11A0415 G RISHI RAJ

16 14R11A0416 G VAMSHI KRISHNA

G-4

17 14R11A0417 G VENKATESH YADAV

18 14R11A0418 GONDA RISHIKA

19 14R11A0419 GUDE GOPI

20 14R11A0420 JAGGANNAGARI MANOJKUMAR REDDY

21 14R11A0421 JAGGARI SRINIJA REDDY

G-5

22 14R11A0422 JALAGAM NANDITHA

23 14R11A0423 JAMMIKUNTLA SHIVA CHARAN

24 14R11A0424 JATAPROLU LAKSHMI SOWMIKA

25 14R11A0425 JEKSANI SHREYA

26 14R11A0426 K VIJAY KUMAR

G-6

27 14R11A0427 KAALISETTY KRISHNA CHAITANYA

28 14R11A0428 KAKARLA MOUNICA

29 14R11A0429 KARRE PRIYANKA

30 14R11A0430 KL N SATYANARAYANA MURTHY

31 14R11A0431 KONDA KRITISH KUMAR

G-7

32 14R11A0432 KOPPULA RAHUL

33 14R11A0433 KURUGANTI RUNI TANISHKA SHARMA

34 14R11A0434 L THRILOK

35 14R11A0435 MANDULA SANTOSHINI

94

36 14R11A0436 MATLA PRINCE TITUS

G-8

37 14R11A0437 NARSETTI SAIPRAVALIKA

38 14R11A0438 NIKITHA RAGI

39 14R11A0439 P VIJAYA ADITYA VARMA

40 14R11A0440 PASHAM VIKRAM REDDY

41 14R11A0441 PELLURI KARAN KUMAR

G-9

42 14R11A0442 PERURI CHANDANA

43 14R11A0443 PODUGU SRUJANA DEVI

44 14R11A0444 RAJNISH KUMAR

45 14R11A0445 RAJU PAVANA KUMARI

46 14R11A0446 RAMIDI NITHYA

G-10

47 14R11A0447 RAMOJI RAJESH

48 14R11A0448 S ALEKHYA

49 14R11A0449 SARANGA SAI KIRAN

50 14R11A0450 SHAIK SAMEER ALI

51 14R11A0451 SOUMYA MISHRA

G-11

52 14R11A0452 SRIRAMOJU MANASA

53 14R11A0453 T ARUN KUMAR

54 14R11A0454 T S SANTHOSH KUMAR

55 14R11A0455 V BAL RAJ

56 14R11A0456 V POOJA

G-12

57 14R11A0457 V SRIVATS VISHWAMBER

58 14R11A0458 VEMI REDDY VISHNU VARDHAN REDDY

59 14R11A0459 VENNAMANENI VAMSI KRISHNA

60 14R11A0460 YERASI TEJASRI

61 15R15A0401 RAMIDI SANDEEP REDDY

G-13
62 15R15A0402 ODDARAPU HARISHBABU

63 15R15A0403 KOLUKURI BHARGAVI

64 15R15A0404 ADEPU MOUNIKA

65 15R15A0405 AVANCHA PRAVALIKA

G-14 66 15R15A0406 NELLUTLA VISHAL CHAITANYA

67 15R15A0407 VEMUNA JAMEENA

ECE -2-1B

S.No Roll Number Name of the Candidate Groups No.

1 14R11A0461 ADDAKULA SURESH

G-1

2 14R11A0462 AGARTI MADHU VIVEKA

3 14R11A0463 AKULA SAI KIRAN

4 14R11A0464 ANUMULA SNIGDHA

5 14R11A0465 B DIVYA

6 14R11A0466 B MANOHAR

G-2
7 14R11A0467 BANDARI MAMATHA

8 14R11A0468 BINGI DIVYA SUDHA RANI

9 14R11A0469 BIRE BHAVYA

95

10 14R11A0470 CH SAI BHARGAVI

11 14R11A0471 CHAVALI SUMA SIREESHA

G-3

12 14R11A0472 CHELLABOINA SHIVA KUMAR

13 14R11A0473 CHETTY AKHIL CHAND

14 14R11A0474 CHINTAPALLI MADHAV REDDY

15 14R11A0475
CHIVUKULA VENKATA SUBRAMANYA
PRASANTH

16 14R11A0476 D NAGA SUMANVITHA

G-4

17 14R11A0477 D VAMSI

18 14R11A0478 DHARMENDER KEERTHI

19 14R11A0479 EADARA NAGA SIRISHA

20 14R11A0480 ERANKI SAI UDAYASRI ALAKANANDA

21 14R11A0481 GANGA STEPHEN RAVI KUMAR

G-5

22 14R11A0482 GUNDAM SHRUTHI

23 14R11A0483 GUNDREVULA SAMEERA

24 14R11A0484 K NAGA REKHA

25 14R11A0485 KANDADI VARSHA

26 14R11A0486 KURELLI SAI VINEETH KUMAR GOUD

G-6

27 14R11A0487 MADDIKUNTA SOMA SHEKAR REDDY

28 14R11A0488 MAMILLA SAI NISHMA

29 14R11A0489 MARELLA NAGA LASYA PRIYA

30 14R11A0490 MARKU VENKATESH

31 14R11A0491 MOHAMED KHALEEL

G-7

32 14R11A0492 MOHAMMED WASEEM AKRAM

33 14R11A0493 MOTURI DIVYA

34 14R11A0494 MUDIUM KOUSHIKA

35 14R11A0495 MYLAPALLI RAMBABU

36 14R11A0496 NAGU MOUNIKA

G-8

37 14R11A0497 NEELAM SNEHANJALI

38 14R11A0498 NIDAMANURI VENKATA VAMSI KRISHNA

39 14R11A0499 NIKHIL KUMAR N

40 14R11A04A0 ORUGANTI HARSHINI

41 14R11A04A1 PARAMKUSAM NIHARIKA

G-9

42 14R11A04A2 PASAM ABHIGNA

43 14R11A04A3 PATI VANDANA

44 14R11A04A4 PODISHETTY MANOGNA

45 14R11A04A5 PONAKA SREEVARDHAN REDDY

46 14R11A04A6 R NAVSHETHA

G-10

47 14R11A04A7 R PRANAY KUMAR

48 14R11A04A8 RAMIDI ROJA

49 14R11A04A9 RUDRA VAMSHI

50 14R11A04B0 S SHARAD KUMAR

51 14R11A04B1 SAGGU SOWMYA
G-11

52 14R11A04B2 TADELA SARWANI

96

53 14R11A04B3 THOTA SAI BHUVAN

54 14R11A04B4 VALLAPU HARIKRISHNA

55 14R11A04B5 VECHA PAVAN KUMAR

56 14R11A04B6 Y SAI VISHWANATH

G-12

57 15R15A0408 ERUKALA NIKITHA

58 15R15A0409 PUNGANUR JAYACHANDRA BHARATHWAJ

59 15R15A0410 GALIPALLY BHARGAVA

60 15R15A0411 PADMA ARUNRAJ

61 15R15A0412 JAMALAPURAM NAVEEN

G-13

62 15R15A0413 MACHANNI BALAKRISHNA YADAV

63 15R15A0414 ANABOINA MAHENDER

64 15R15A0415 ANABOINA SHIVA SAI

65 15R15A0416 VEMULA VINITHA

66 15R15A0417 CHEVU NAGESH

ECE – 2-1C

S.No Roll Number Name of the Candidate Groups No.

1 14R11A04B9 ANAMALI REETHIKA

G-1

2 14R11A04C0 ARUMILLI LEKYA

3 14R11A04C1 ARUMUGAM ASHWINI

4 14R11A04C2 BASAVARAJU MEGHANA

5 14R11A04C3 BEERAM TEJASRI REDDY

6 14R11A04C4 BHARAT SAKETH

G-2

7 14R11A04C5 BOMMANA HARIKADEVI

8 14R11A04C6 BYRAGONI ROJA

9 14R11A04C7 CANDHI SHASHI REKHA

10 14R11A04C8 CH RENUKA

11 14R11A04C9 CHAGANTI MOUNICA

G-3

12 14R11A04D0 CHITTARLA LOKESH GOUD

13 14R11A04D1 D LAVANYA

14 14R11A04D2 D MANIKANTA

15 14R11A04D3 DASARI VENKATA NAGA SAISH

16 14R11A04D4 DODDA MANOJ

G-4

17 14R11A04D5 E RAHUL CHOWDHARY

18 14R11A04D6 GOWRISHETTY VINEETHA

19 14R11A04D7 GUNTUPALLI RAVI TEJA

20 14R11A04D8 K L ANUSHA

21 14R11A04D9 K SASIDHAR

G-5

22 14R11A04E0 KANAKA RAMYA PRATHIMA

23 14R11A04E1 KASTURI SHIVA SHANKER REDDY

24 14R11A04E2 KODHIRIPAKA DHENUSRI

25 14R11A04E3 KOLA AISHWARYA

26 14R11A04E4 KONDOJU AKSHITHA
G-6

27 14R11A04E5 KOUDAGANI ALEKHYA REDDY

97

28 14R11A04E6 KUMMARIKUNTA PRASHANTH

29 14R11A04E7 KURVA SAI KUMAR

30 14R11A04E8 M AJAY KRISHNA

31 14R11A04E9 M MRIDULA GAYATRI

G-7

32 14R11A04F0 MANGALAPALLI SRAVANTHI

33 14R11A04F1 MERUGU PALLAVI

34 14R11A04F2 MITHIN VARGHESE

35 14R11A04F3 MOHD EESA SOHAIL

36 14R11A04F4 MUCHUMARI HARSHA VARDHAN REDDY

G-8

37 14R11A04F5 MUNUGANTI PRADHYUMNA

38 14R11A04F6 N DURGA RAJU

39 14R11A04F7 N SAKETH

40 14R11A04F8 N SANDHYA

41 14R11A04F9 NALLAGONI SRAVANTHI

G-9

42 14R11A04G0 P MANMOHAN SHASHANK VARMA

43 14R11A04G1 PRABHALA SRUTHI

44 14R11A04G2 PRAYAGA VENKATA SATHYA KAMESWARA PAV

45 14R11A04G3 R SAILESH

46 14R11A04G4 SAMBANGI POOJA

G-10

47 14R11A04G5 SAMEENA

48 14R11A04G6 SANGOJI SAI CHANDU

49 14R11A04G7 SURANENI NAMRATHA

50 14R11A04G8 TADAKAPALLY VIVEK REDDY

51 14R11A04G9 THUMUKUMTA VAMSHI TEJA

G-11

52 14R11A04H0 TIRUNAGARI SRAVAN KUMAR

53 14R11A04H1 TRIPURARI SOWGANDHIKA

54 14R11A04H2 TUNIKI MADHULIKA REDDY

55 14R11A04H3 U SAI MANASWINI

56 14R11A04H4 VAIDYA KEERTHI MALINI

G-12

57 14R11A04H5 VANGETI PRAVALLIKA

58 14R11A04H6 VASIREDDY VENKATA SAI

59 14R11A04H7 VELDURTHY SAI KEERTHI

60 14R11A04H8 WILSON DAVIES

61 15R11A0418 KOTA RAJESH

G-13

62 15R11A0419 N MOUNIKA

63 15R11A0420 ARTHI SHARMA

64 15R11A0421 RAJPET SHIRISHA

65 15R11A0422 MALOTH RAMESH NAIK

66 15R11A0423 PAILLA PREM RAJ REDDY

ECE – 2-1D

S.No Roll Number Name of the Candidate Groups No.

1 14R11A04H9 A SHIRISHA
G-1

2 14R11A04J0 ABHIJEET KUMAR

98

3 14R11A04J1 ADULLA PRANAV REDDY

4 14R11A04J2 AINAPARTHI SAIVIJAYALAKSHMI SANDHYA

5 14R11A04J3 AMBATI SHIVA SAI

6 14R11A04J4 ANU PRASAD

G-2

7 14R11A04J5 B SAI APOORVA

8 14R11A04J6 B SRI KRISHNA SAI KIREETI

9 14R11A04J7 CHITTOJU LAKSHMI NARAYANAMMA

10 14R11A04J8 CHOWDARAPALLY SANTOSH KUMAR

11 14R11A04J9 D SAHITHI

G-3

12 14R11A04K0 DEVULAPALLI SAI CHAITANYA SANDEEP

13 14R11A04K1 DUSARI ANUSHA

14 14R11A04K2 GOLLAPUDI SRIKETH

15 14R11A04K3 GOLLIPALLY TEJASREE

16 14R11A04K4 GOUTE SHRAVAN KUMAR

G-4

17 14R11A04K5 GUDA PRATHYUSHA REDDY

18 14R11A04K6 JUNNU RAVALI

19 14R11A04K7 K DEVI PRIYANKA

20 14R11A04K8 KANDULA MANI

21 14R11A04K9 KARRA AVINASH

G-5

22 14R11A04L0 KASULA PRADEEP GOUD

23 14R11A04L1 KOMARAKUNTA SHASHANK

24 14R11A04L2 KOTHAKOTA PHANI RISHITHA

25 14R11A04L3 MADHADI NIKHIL KUMAR REDDY

26 14R11A04L4 MANDUMULA RAGHAVENDRA

G-6

27 14R11A04L5 MOHD HAMEED

28 14R11A04L6 MOHD SHAMS TABREZ

29 14R11A04L7 MORSU GANESH REDDY

30 14R11A04L8 MUKKERA VARUN

31 14R11A04L9 NAGULAPALLY MANOHAR REDDY

G-7

32 14R11A04M0 NAMBURI LAKSHMI MANJUSHA

33 14R11A04M1 NIROGI SURYA PRIYANKA

34 14R11A04M2 NUNE SAI CHAND

35 14R11A04M3 PALLETI SUSHMITHA

36 14R11A04M4 PANCHAYAT SHAMILI

G-8

37 14R11A04M5 POOSA JAI SAI NISHANTH

38 14R11A04M6 PRANAV RAJU A

39 14R11A04M7 RAYCHETTI CHANDRASENA

40 14R11A04M8 REBBA BHAVANI

41 14R11A04M9 S BHARATH SAGAR

G-9

42 14R11A04N0 S V M SURYA TEJASWINI

43 14R11A04N1 SAMA MANVITHA REDDY

44 14R11A04N2 SHAMALA MEGHANA

45 14R11A04N3 SMITHA KUMARI PATRO

99

46 14R11A04N4 T L SARADA RAMYA KAPARDHINI

G-10

47 14R11A04N5 T VINAY KUMAR

48 14R11A04N6 TABELA OMKAR

49 14R11A04N7 TADACHINA SAINATH REDDY

50 14R11A04N8 VANGA MOUNIKA

51 14R11A04N9 VARRI PRASHANTHI

G-11

52 14R11A04P0 VASARLA SAI TEJA

53 14R11A04P1 VISHWANATHAM ANUSHA

54 14R11A04P2 Y SRI SAI ADITYA

55 14R11A04P3 YAKKALA ASHIKA

56 14R11A04P4 YALAVARTHY MAHIMA

G-12

57 14R11A04P5 YALLAPRAGADA SAI TEJASRI

58 14R11A04P6 YARASI SAI RAMYA REDDY

59 14R11A04P7 S TARUN

60 15R15A0424 ARURI REJENDER

61 15R15A0425 KALALI BHAVANI

G-13
62 15R15A0426 JANUGANI SAI KRISHNA

63 15R15A0427 SATHENDER KUMAR YADAV

64 15R15A0428 KADEM PRAVEEN

65 15R15A0429 ARROJU AKHIL

G-14 66 15R15A0430 CH POOJA

67 15R18A0401 G SHREEHARSHA REDDY

