
Geethanjali College of Engg.&Tech. Department of ECE IV B.Tech II-Sem

DIGITAL DESIGN THROUGH VERILOG HDL Page 1

Digital Design Through Verilog
Hdl

IV-YEAR II-SEM

Dept. of Electronics and Communication Engineering

Geethanjali College of Engg.&Tech. Department of ECE IV B.Tech II-Sem

DIGITAL DESIGN THROUGH VERILOG HDL Page 2

LIST OF CONTENTS

Sl. No. CONTENT

1 Cover Page
2 Syllabus copy
3 Vision of the Department
4 Mission of the Department
5 PEOs and POs
6 Course objectives and outcomes
7 Brief notes on importance of Course
8 Prerequisites if any
9 Instructional Learning Outcomes
10 Course mapping with PEOs and POs
11 Class Time Table
12 Individual Time Table
13 Micro Plan with dates and closure report
14 Detailed notes
15 Additional/missing topics
16 University previous Question papers
17 Question Bank
18 Assignment topics
19 Unitwise bits
20 Tutorial class sheets
21 Known gaps
22 Discussion topics if any
23 References, Journals, websites and E-links
24 Quality Control Sheets

a. Course end Survey

b. Teaching Evaluation
25 Student List
26 Group-Wise students list for discussion topics

Geethanjali College of Engg.&Tech. Department of ECE IV B.Tech II-Sem

DIGITAL DESIGN THROUGH VERILOG HDL Page 3

GEETHANJALI COLLEGE OF ENGINEERING AND

TECHNOLOGY

DEPARTMENT OF Electrical and Electronics Engineering

(Name of the Subject / Lab Course) : DIGITAL DESIGN THROUGH VERILOG

HDL

(JNTU CODE -58033) Programme : UG

Branch: ECE Version No : 04

Year: IV-Year Updated on :26 -11-15

Semester: II-sem No.of pages :186

Classification status (Unrestricted / Restricted)

Distribution List :

Prepared by : 1) Name :JUGAL KISHORE 1) Name :
BHANDARI
 2) Sign : 2) Sign :

 3) Design : Asst. Prof. 3) Design :

 4) Date : 4) Date :

Verified by : 1) Name :

 2) Sign :

 3) Design :

 4) Date :

* For Q.C Only.1) Name :

 2) Sign :

 3) Design :

 4) Date :

Approved by : (HOD) 1) Name : Dr. P. Srihari

 2) Sign :

 3) Date :

Geethanjali College of Engg.&Tech. Department of ECE IV B.Tech II-Sem

DIGITAL DESIGN THROUGH VERILOG HDL Page 4

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

DIGITAL DESIGN THROUGH VERILOG

(ELECTIVE – III)

UNIT I

INTRODUCTION TO VERILOG:

Verilog as HDL, Levels of Design Description, Concurrency, Simulationand Synthesis, Functional

Verification, System Tasks, Programming Language Interface (PLI), Module,Simulation and

Synthesis Tools.

UNIT II

LANGUAGE CONSTRUCTS AND CONVENTIONS:

Introduction, Keywords, Identifiers, White Space Characters, Comments, Numbers, Strings, Logic

Values, Strengths, Data Types, Scalars and Vectors, Parameters, Memory, Operators.

UNIT III

GATE LEVEL MODELING:

Introduction, AND Gate Primitive, Module Structure, Other Gate Primitives,Illustrative Examples,

Tri-State Gates, Array of Instances of Primitives, Additional Examples, Design of Flip-flopswith

Gate Primitives, Delays, Strengths and Contention Resolution, Net Types, Design of BasicCircuits.

UNIT IV

BEHAVIORAL MODELING:

Introduction, Operations and Assignments, Functional Bifurcation, InitialConstruct, Always

Construct, Examples, Assignments with Delays, Wait construct, Multiple Always Blocks,Designs at

Behavioral Level, Blocking and Non blocking Assignments, The case statement, Simulation Flow.iƒ

and iƒ-else constructs, assign-deassign construct, repeat construct, for loop, the disable construct,

whileloop, forever loop, parallel blocks, force-release construct, Event.

UNIT V

MODELING AT DATA FLOW LEVEL:

Introduction, Continuous Assignment Structures, Delays and Continuous Assignments, Assignment

Geethanjali College of Engg.&Tech. Department of ECE IV B.Tech II-Sem

DIGITAL DESIGN THROUGH VERILOG HDL Page 5

to Vectors, Operators.

SWITCH LEVEL MODELING:

Basic Transistor Switches, CMOS Switch, Bi-directional Gates, Time Delays with Switch Primitives,

Instantiation with ‘Strengths’ and ‘Delays’, Strength Contention with Trireg Nets.

UNIT VI

SYSTEM TASKS, FUNCTIONS, AND COMPILER DIRECTIVES:

Introduction, Parameters, Path Delays, Module Parameters, System Tasks and Functions, File-Based

Tasks and Functions, Compiler Directives, Hierarchical Access, User- Defined Primitives (UDP).

 UNIT VII

SEQUENTIAL CIRCUIT DESCRIPTION:

Sequential models – feedback model, capacitive model, implicit model, basic memory components,

functional register, static machine coding, sequential synthesis.

UNIT VIII

COMPONENT TEST AND VERIFIACTION:

Test bench – combinational circuit testing, sequential circuit testing, test bench techniques,

design verification, assertion verification.

COURSE DESCRIPTION:

 This course covers the use of Verilog and Systemverilog Languages (IEEE Std. 1800) for

the design and development of digital integrated circuits, including mask-programmed integrated

circuits (ASICs) and field programmable devices (FPGAs). Hierarchical top down vs. bottom up design,

synthesizable vs. non-synthesizable code, design scalability and reuse, verification, hardware modeling,

simulation system tasks, compiler directives and subroutines are all covered and illustrated with design

examples.

3 Credits are allocated for this subject.

Geethanjali College of Engg.&Tech. Department of ECE IV B.Tech II-Sem

DIGITAL DESIGN THROUGH VERILOG HDL Page 6

3. VISION OF THE DEPARTMENT:

To impart quality technical education in Electronics and Communication Engineering

emphasizing analysis, design/synthesis and evaluation of hardware/embedded software using

various Electronic Design Automation (EDA) tools with accent on creativity, innovation and

research thereby producing competent engineers who can meet global challenges with

societal commitment.

4. MISSION OF THE DEPARTMENT:

I. To impart quality education in fundamentals of basic sciences, mathematics, electronics

and communication engineering through innovative teaching-learning processes.

II. To facilitate Graduates define, design, and solve engineering problems in the field of

Electronics and Communication Engineering using variousElectronic Design Automation

(EDA) tools.

III. To encourage research culture among faculty and students thereby facilitating them to

be creative and innovative through constant interaction with R & D organizations and

Industry.

IV. To inculcate teamwork, imbibe leadership qualities, professional ethics and social
responsibilities in students and faculty.

5. Program Educational Objectives of B. Tech (ECE) Program:

I. To prepare students with excellent comprehension of basic sciences, mathematics and

engineering subjects facilitating them to gain employment or pursue postgraduate

studies with an appreciation for lifelong learning.

II. To train students with problem solving capabilities such as analysis and design with

adequate practical skills wherein they demonstrate creativity and innovation that would

enable them to develop state of the art equipment and technologies of multidisciplinary

nature for societal development.

III. To inculcate positive attitude, professional ethics, effective communication and

interpersonal skills which would facilitate them to succeed in the chosen profession

Geethanjali College of Engg.&Tech. Department of ECE IV B.Tech II-Sem

DIGITAL DESIGN THROUGH VERILOG HDL Page 7

exhibiting creativity and innovation through research and development both as team

member and as well as leader.

Program Outcomes of B.Tech ECE Program:

1. An ability to apply knowledge of Mathematics, Science, and Engineering to solve

complex engineering problems of Electronics and Communication Engineering systems.

2. An ability to model, simulate and design Electronics and Communication Engineering

systems, conduct experiments, as well as analyze and interpret data and prepare a report

with conclusions.

3. An ability to design an Electronics and Communication Engineering system, component,

or process to meet desired needs within the realistic constraints such as economic,

environmental, social, political, ethical, health and safety, manufacturability and

sustainability.

4. An ability to function on multidisciplinary teams involving interpersonal skills.

5. An ability to identify, formulate and solve engineering problems of multidisciplinary

nature.

6. An understanding of professional and ethical responsibilities involved in the practice of

Electronics and Communication Engineering profession.

7. An ability to communicate effectively with a range of audience on complex engineering

problems of multidisciplinary nature both in oral and written form.

8. The broad education necessary to understand the impact of engineering solutions in a

global, economic, environmental and societal context.

9. Recognition of the need for, and an ability to engage in life-long learning and acquire the

capability for the same.

10. A knowledge of contemporary issues involved in the practice of Electronics and

Communication Engineering profession

11. An ability to use the techniques, skills and modern engineering tools necessary for

engineering practice.

12. An ability to use modern Electronic Design Automation (EDA) tools, software and

electronic equipment to analyze, synthesize and evaluate Electronics and Communication

Engineering systems for multidisciplinary tasks.

13. Apply engineering and project management principles to one’s own work and also to

manage projects of multidisciplinary nature.

Geethanjali College of Engg.&Tech. Department of ECE IV B.Tech II-Sem

DIGITAL DESIGN THROUGH VERILOG HDL Page 8

6. Course objectives and outcomes

Course Objectives:

 The ability to code and simulate any digital function in Verilog HDL.

 Know the difference between synthesizable and non-synthesizable code.

 Understand library modeling, behavioral code and the differences between them.

 Understand the differences between simulator algorithms.

 Learn good coding techniques per current industrial practices.

 Understand logic verification using Verilog simulation.

Course outcomes:

Subject: Digital Design through Verilog HDL
.
CO 1: Students will have an ability to describe Verilog hardware description languages (HDL).

CO 2: Students will be able to Design Digital Circuits in Verilog HDL.

CO 3: Ability to write behavioral models of digital circuits.

CO 4: Ability to write Register Transfer Level (RTL) models of digital circuits.

CO 5: Ability to verify behavioral and RTL models.

CO 6: Students will have an ability to describe standard cell libraries and FPGAs.

CO 7: To Synthesize RTL models to standard cell libraries and FPGAs.

CO 8: To Implement RTL models on FPGAs and Testing & Verification.

Brief note on importance of course

This course is intended to provide a thorough coverage of Verilog HDL concepts based

on fundamental principles of VLSI Design.

1) This is the basic fundamental subject for the programming of the digital Electronics.

2) This subject is required to understand the programming of the combinational and

sequential circuit designs.

Geethanjali College of Engg.&Tech. Department of ECE IV B.Tech II-Sem

DIGITAL DESIGN THROUGH VERILOG HDL Page 9

3) By studying this subject, the students can design and understand digital systems and

its importance.

4) Large and complicated digital circuits can be incorporated into hardware by using

Verilog, a hardware description language (HDL). Design through Verilog HDL

affords novices the opportunity to perform all of these tasks, while also offering

seasoned professionals a comprehensive resource on this dynamic tool.

5) Describing a design using Verilog is only half the story: writing test-benches, testing

a design for all its desired functions, and how identifying and removing the faults

remain significant challenges. Design Through Verilog HDL addresses each of these

issues concisely and effectively.

6) The students logical thinking capability will be improved which will help in

placements and in their future technical assignments.

8. Prerequisites:

1) Concepts of switching theory and logic design.

2) A basic understanding of digital hardware design and verification.

9. Instructional objectives and Learning outcomes:

UNIT I

Introduction to Verilog HDL:

After completion of this unit, students are able to:

1. Students understand the importance of HDL (Hardware Descriptive Language) and apply

the knowledge ofBoolean algebra to design and development digital Systems.

2. Understand the difference between concurrent and sequential programming.

3. Issues related to simulation and synthesis models.

UNIT II

Language Constructs and Conventions:

After completion of this unit, students are able to:

1. Knowledge of language constructs

2. Pertaining to Semantic and syntactical errors in programming using HDL

Geethanjali College of Engg.&Tech. Department of ECE IV B.Tech II-Sem

DIGITAL DESIGN THROUGH VERILOG HDL Page 10

3. Limitation of HDL

UNIT III

Gate Level Modeling:

 After completion of this unit, students are able to:

1. Student will learn conventional structural modeling of digital systems.

2. Learn to model language defined primitive gates

3. Understand importance of component structure in Verilog.

4. Learn Hierarchical digital system building

UNIT IV

Modeling at Dataflow Level:

After completion of this unit, students are able to:

1. Continuous assignment operator based model construction will be learnt.

UNIT V

After completion of this unit, students are able to:

Behavioral Modeling:

1. Students will be familiarized to high level abstraction of digital systems with behavioral

modeling of systems.

2. RTL modeling of digital systems

3. Will be made familiar to behavioral constructs like ‘always’ ,’initial’,’if’, ‘if-

else’,’case’..etc

4. Register and array modeling.

Switch Level Modeling:

5. Students will learn low-level abstraction of digital systems.

6. Switch level primitives will be learnt

7. Made to familiarize to different strengths of logic values

Geethanjali College of Engg.&Tech. Department of ECE IV B.Tech II-Sem

DIGITAL DESIGN THROUGH VERILOG HDL Page 11

UNIT VI

System Tasks, Functions and Compiler Directives:

After completion of this unit, students are able to:

1. Understand the importance of system tasks and functions

2. Understand compiler directives.

3. Understand user defined primitives and learn to model systems using UDP

4. Learn the intricacies associated with usage of functions and tasks in packages

5. Learn package declaration and package usage in project building

UNIT VII

Sequential Circuit Description:

After completion of this unit, students are able to:

1. Learn to model Sequential circuits at higher level of abstraction using RTL modeling

2. Will be able to design static and dynamic memories

3. Will learn to model in behavioral style of binary encoding and one hot encoding

UNIT VIII

Component Test and Verification:

After completion of this unit, students are able to:

1. Students understand Test bench generation

2. Producing of test vectors to test the digital systems at higher level of abstraction.

Geethanjali College of Engg.&Tech. Department of ECE IV B.Tech II-Sem

DIGITAL DESIGN THROUGH VERILOG HDL Page 12

10. Mapping of Course outcomes with Programme outcomes:

*When the course outcome weightage is < 40%, it will be given as moderately correlated (1).

*When the course outcome weightage is >40%, it will be given as strongly correlated (2).

POs 1 2 3 4 5 6 7 8 9 10 11 12 13

Digital Design

Through Verilog

HDL

2 2 2 2 2 1 1 2 2 2 1

CO 1:Students will be

able to describe

Verilog hardware

description

languages (HDL).

2 2 2 2 2 1 2 2 2 1

CO 2:Students will be

able to Design

Digital Circuits in

Verilog HDL.

2 2 2 2 2 2 2 1

CO3:Ability to write

behavioral models of

digital circuits.

1 1 2 1 2 1 1

CO4:Ability to write

Register Transfer

Level (RTL) models

of digital circuits.

1 2 2 2 1 2 1 1

CO5:Ability to verify

behavioral and RTL

models.

2 2 2 2 2 2 1 1

CO 6:Students will

have an abilityto

describe standard

cell libraries and

FPGAs.

2 2 2 2 2 1 1

CO 7: To Synthesize

RTL models to

standard cell

libraries and FPGAs.

1 2 2 2 1 1

CO 8:To Implement

RTL models on

FPGAs and Testing

& Verification.

1 2 2 2 1 2 1 2 1

Geethanjali College of Engg.&Tech. Department of ECE IV B.Tech II-Sem

DIGITAL DESIGN THROUGH VERILOG HDL Page 13

11. Class Time Table:

Geethanjali College of Engg.&Tech. Department of ECE IV B.Tech II-Sem

DIGITAL DESIGN THROUGH VERILOG HDL Page 14

12. Individual Time Table:

13. Micro Plan With Dates & Closure Report:

SL.

NO

Unit

No.

Total

no. of

peroi

ds

Date Topics to be covered in one

lecture

Regula

r/

Additio

nal

Teaching

aids used

LCD/

OHP/

BB

Remarks

1 I 4 11/12/15 Verilog as HDL, Levels of Design

Description, Concurrency, Verilog

as HDL, Levels of Design

Description

Regular OHP,BB

2 11/12/15 Concurrency Simulation and

Synthesis, Functional Verification,

System Tasks

Regular OHP,BB

3 12/12/15 Programming Language Interface

(PLI), Module, Simulation and

Synthesis Tools

Regular OHP,BB

4 12/12/15 Tutorial class-1

Geethanjali College of Engg.&Tech. Department of ECE IV B.Tech II-Sem

DIGITAL DESIGN THROUGH VERILOG HDL Page 15

5 II 3 18/12/15 LANGUAGE CONSTRUCTS

AND

CONVENTIONS:Introduction,

KeywordsIdentifiers, White Space

Characters, Comments, Numbers,

Strings, Logic Values, Strengths

Regular BB

6 18/12/15 Data Types, Scalars and Vectors,

Parameters, Memory, Operators,

System Tasks, Exercises.

Regular OHP,BB

7 19/12/15 Tutorial class-2 BB

8 III 4 26/12/15 GATE LEVEL MODELING:

Introduction, AND Gate Primitive,

Module Structure

Regular OHP,BB

9 26/12/15 Other Gate Primitives, Illustrative

Examples, Tri-State Gates

Regular OHP,BB

10 02/01/16 Array of Instances of Primitives,

Additional Examples

Regular OHP,BB

11 02/01/16 Design of Flip-flops with Gate

Primitives, Delays

Regular BB

12 08/01/16 Strengths and Contention

Resolution, Net Types, Design of

Basic Circuits.

Regular BB

13 08/01/16 Verilog designs for various

rounding methods

Additio

nal

OHP,BB

14 08/01/16 Tutorial class-3

15 IV 4 22/01/16 BEHAVIORAL MODELING:

Introduction, Operations and

Assignments, Functional

Bifurcation, Initial Construct,

Always Construct, Examples

Regular OHP,BB

16 22/01/16 Assignments with Delays, Wait

construct, Multiple Always Blocks,

Designs at Behavioral Level

Regular OHP,BB

17 29/01/16 Blocking and Non blocking

Assignments, The case statement,

Simulation Flow. iƒ and iƒ-else

constructs

 BB

Geethanjali College of Engg.&Tech. Department of ECE IV B.Tech II-Sem

DIGITAL DESIGN THROUGH VERILOG HDL Page 16

18 29/01/16 Assign-de-assign construct, repeat

construct, for loop, the disable

construct,while loop, forever loop,

parallel blocks, force-release

construct, Event.

 BB

19 05/02/16 Tutorial class-4 BB

20 05/02/16 Solving university papers

21 06/02/16 Assignment test-1

22 Mid test-1

23 V 6 13/02/16 MODELING AT DATAFLOW

LEVEL: Introduction, Continuous

Assignment Structures, Delays and

Continuous Assignments

Regular OHP,BB

24 13/02/16 Assignment to Vectors, Operators. Regular OHP,BB

25 19/02/16 SWITCH LEVEL MODELING:

Introduction Basic Transistor

Switches, CMOS Switch, Bi-

directional Gates

Regular OHP,BB

26 19/02/16 Time Delays with Switch

Primitives, Instantiations with

Strengths and Delays

Regular OHP,BB

27 20/02/16 Strength Contention with Trireg

Nets.

Regular BB

28 20/02/16 Combinational synthesis Additio

nal

BB

29 VI 4 26/02/16 Introduction, Parameters, Path

Delays, Module Parameters,

System Tasks and Functions

Regular OHP,BB

30 26/02/16 File-Based Tasks and Functions,

Compiler Directives, Hierarchical

Access,

Regular OHP,BB

31 27/02/16 User- Defined Primitives (UDP) Regular OHP,BB

Geethanjali College of Engg.&Tech. Department of ECE IV B.Tech II-Sem

DIGITAL DESIGN THROUGH VERILOG HDL Page 17

32 27/02/16 Tutorial class- 5 & 6 BB

33 VII 4 04/03/16 Sequential Models – FeedBack

Model, Capacaitive Model, Implicit

Model

Regular OHP,BB

34 04/03/16 Basic Memory Components,

Functional Register

Regular OHP,BB

35 05/03/16 Static Machine Coding Regular OHP,BB

36 05/03/16 Sequential Synthesis Regular OHP,BB

37 11/03/16 Tutorial class – 7 BB

38 VIII 4 12/03/16 Component Test and Verification:

Test Bench – Combinational

Circuit Testing

Regular OHP,BB

39 18/03/16 Test Bench – Sequential Circuit

Testing

Regular OHP,BB

40 19/03/16 Test Bench Techniques Regular OHP,BB

41 26/03/16 Design Verification Regular OHP,BB

42 01/04/16 Assertion Verification Regular OHP,BB

43 01/04/16 Tutorial Class – 8 BB

44 02/04/16 Solving university papers BB

45 09/04/16 Assignment test-2

46 Mid test-2

Course closer Report on Digital Design Through Verilog HDL:

1. No. of classes Planned to complete the course : 36

2. No.of classes conducted : ECE-A

ECE-B

ECE-C

3. No. of students appeared the External Examination : ECE-A

ECE-B

ECE-C

4. No. of students passed in the External Examination : ECE-A

ECE-B

ECE-C

5. No. of Students failed in the External Examination : ECE-A

ECE-B

ECE-C

6. Pass percentage of each section : ECE-A

ECE-B

ECE-C

7. Maximum marks obtained in the Course : ECE-A

 ECE-B

ECE-C

Geethanjali College of Engg.&Tech. Department of ECE IV B.Tech II-Sem

DIGITAL DESIGN THROUGH VERILOG HDL Page 18

14. Detailed Notes:

1

INTRODUCTION TO VLSI DESIGN

1.1 INTRODUCTION

The word digital has made a dramatic impact on our society. More significant is a continuous

trend towards digital solutions in all areas – from electronic instrumentation, control, data

manipulation, signals processing, telecom-munications etc., to consumer electronics.

Development of such solutions has been possible due to good digital system design and modeling

techniques.

1.2 CONVENTIONAL APPROACH TO DIGITAL DESIGN

Digital ICs of SSI and MSI types have become universally standardized and have beenaccepted for

use. Whenever a designer has to realize a digital function, he uses a standard set of ICs along with

a minimal set of additional discrete circuitry. Consider a simple example of realizing a function as

Q n+1 = Q n + (A B)

Here Qn,A, and B are Boolean variables, with Qn being the value of Q at the nth time step. Here A

B signifies the logical AND of A and B; the ‘+’ symbol signifies the logical OR of the logic variables

on either side. A circuit to realize the function is shown in Figure 1.1. The circuit can be realized in

terms of two ICs – an A-O-I gate and a flip-flop. It can be directly wired up, tested, and used.

clk Q
n

A

B

Figure 1.1 A simple digital circuit.

With comparatively larger circuits, the task mostly reduces to one of identifying the set of ICs

necessary for the job and interconnecting; rarely does one have to resort to a microlevel design

[Wakerly]. The accepted approach to digital design here is a mix of the top-down and bottom-up

approaches as follows [Hill & Peterson]:

Decide the requirements at the system level and translate them to circuit requirements.
Identify the major functional blocks required like timer, DMA unit, register-

file etc., say as in the design of a processor.

Geethanjali College of Engg.&Tech. Department of ECE IV B.Tech II-Sem

DIGITAL DESIGN THROUGH VERILOG HDL Page 19

Whenever a function can be realized using a standard IC, use the same –for
example programmable counter, mux, demux, etc.

Whenever the above is not possible, form the circuit to carry out the block
functions using standard SSI – for example gates, flip-flops, etc.

Use additional components like transistor, diode, resistor, capacitor, etc., wherever essential.

Once the above steps are gone through, a paper design is ready. Starting with the paper design, one

has to do a circuit layout. The physical location of all the components is tentatively decided; they are

interconnected and the ‘circuit-on-paper’ is made ready. Once a paper design is done, a layout is carried

out and a net-list prepared. Based on this, the PCB is fabricated, and populated and all the populated

cards tested and debugged. The procedure is shown as a process flowchart in Figure 1.2.

 System requirements

 Circuit requirements

Other components ICs

 PCB layout

 Wiring & testing

 Final circuit

Figure 1.2 Sequence of steps in conventional electronic circuit design.

Geethanjali College of Engg.&Tech. Department of ECE IV B.Tech II-
Sem

DIGITAL DESIGN THROUGH VERILOG HDL Page 20

At the debugging stage one may encounter three types of problems:
Functional mismatch: The realized and expected functions are different. Onemay have

to go through the relevant functional block carefully and locate any error logically. Finally

the necessary correction has to be carried out in

hardware.

Timing mismatch: The problem can manifest in different forms. Onepossibility is due to

the signal going through different propagation delays in two paths and arriving at a point

with a timing mismatch. This can cause faulty operation. Another possibility is a race

condition in a circuit involving asynchronous feedback. This kind of problem may call for

elaborate debugging. The preferred practice is to do debugging at smaller module stages

and ensuring that feedback through larger loops is avoided: It becomes

essential to check for the existence of long asynchronous loops.

Overload: Some signals may be overloaded to such an extent that the signaltransition

may be unduly delayed or even suppressed. The problem manifests as reflections and

erratic behavior in some cases (The signal has to be suitably buffered here.). In fact,

overload on a signal can lead to timing mismatches.

The above have to be carried out after completion of the prototype PCB
manufacturing; it involves cost, time, and also a redesigning process to develop
a bugfree design.

1.3 VLSI DESIGN

The complexity of VLSIs being designed and used today makes the manual approach to

design impractical. Design automation is the order of the day. With the rapid

technological developments in the last two decades, the status of VLSI technology is

characterized by the following [Wai-kai, Gopalan]:

A steady increase in the size and hence the functionality of the ICs.

A steady reduction in feature size and hence increase in the speed of operation
as well as gate or transistor density.

A steady improvement in the predictability of circuit behavior.
A steady increase in the variety and size of software tools for VLSI design.
The above developments have resulted in a proliferation of approaches to VLSI
design. We briefly describe the procedure of automated design flow [Rabaey,
Smith MJ]. The aim is more to bring out the role of a Hardware Description
Language (HDL) in the design process. An abstraction based model is the basis
of the automated design.

Geethanjali College of Engg.&Tech. Department of ECE IV B.Tech II-
Sem

DIGITAL DESIGN THROUGH VERILOG HDL Page 21

Abstraction Model

The model divides the whole design cycle into various domains (see Figure 1.3).
With such an abstraction through a division process the design is carried out in
different layers. The designer at one layer can function without bothering about
the layers above or below. The thick horizontal lines separating the layers in the
figure signify the compartmentalization. As an example, let us consider design
at the gate level. The circuit to be designed would be described in terms of truth
tables and state tables. With these as available inputs, he has to express them as
Boolean logic equations and realize them in terms of gates and flip-flops. In
turn, these form the inputs to the layer immediately below.
Compartmentalization of the approach to design in the manner described here
is the essence of abstraction; it is the basis for development and use of CAD
tools in VLSI design at various levels.

The design methods at different levels use the respective aids such as Boolean equations,

truth tables, state transition table, etc. But the aids play only a small role in the process. To

complete a design, one may have to switch from one tool to another, raising the issues of tool

compatibility and learning new environments.

1.4 ASIC DESIGN FLOW

As with any other technical activity, development of an ASIC starts with an idea and takes

tangible shape through the stages of development as shown in Figure 1.4 and shown in

detail in Figure 1.5. The first step in the process is to expand the idea in terms of behavior

of the target circuit. Through stages of programming, the same is fully developed into a

design description – in terms of well defined standard constructs and conventions.

Structural domain
Processing core : nondigital, nonelectronic systems
Microprocessors, memories, I/O devices
Registers, ALU, multipliers
Gates, flip-flops

Behavioral domain
System

(Performance

specificatio

ns)

Chip
(Micro
-
operati
ons)

Register

(Truth tables, state tables)
Gate (Boolean

equations)

Geethanjali College of Engg.&Tech. Department of ECE IV B.Tech II-
Sem

DIGITAL DESIGN THROUGH VERILOG HDL Page 22

Transistors, L, R, C

 Circuit (differential equations)

Geometric objects
 Silicon (none)

Figure 1.3 Design domain and levels of abstraction.

Idea

Design description

Simulation Synthesis

Physical
design

Figure 1.4 Major activities in ASIC design.

Geethanjali College of Engg.&Tech. Department of ECE IV B.Tech II-
Sem

DIGITAL DESIGN THROUGH VERILOG HDL Page 23

The design is tested through a simulation process; it is to check, verify, and

ensure that what is wanted is what is described. Simulation is carried out through dedicated tools.

With every simulation run, the simulation results are studied to identify errors in the design

description. The errors are corrected and another simulation run carried out. Simulation and

changes to design description together form a cyclic iterative process, repeated until an error-free

design is evolved.

Design description is an activity independent of the target technology or manufacturer. It results

in a description of the digital circuit. To translate it into a tangible circuit, one goes through the

physical design process. The same constitutes a set of activities closely linked to the manufacturer

and the target technology

1.4.1 Design Description

The design is carried out in stages. The process of transforming the idea into a detailed

circuit description in terms of the elementary circuit components constitutes design

description. The final circuit of such an IC can have up to a billion such components; it is

arrived at in a step-by-step manner.

The first step in evolving the design description is to describe the circuit in terms of its behavior.

The description looks like a program in a high level language like C. Once the behavioral level design

description is ready, it is tested extensively with the help of a simulation tool; it checks and confirms

that all the expected functions are carried out satisfactorily. If necessary, this behavioral level

routine is edited, modified, and rerun – all done manually. Finally, one has a design for the expected

system – described at the behavioral level. The behavioral design forms the input to the synthesis

tools, for circuit synthesis. The behavioral constructs not supported by the synthesis tools are

replaced by data flow and gate level constructs. To surmise, the designer has to develop

synthesizable codes for his design.

The design at the behavioral level is to be elaborated in terms of known and acknowledged

functional blocks. It forms the next detailed level of design description. Once again the design is to

be tested through simulation and iteratively corrected for errors. The elaboration can be continued

one or two steps further. It leads to a detailed design description in terms of logic gates and

transistor switches.

1.4.2 Optimization

The circuit at the gate level – in terms of the gates and flip-flops – can be redundant in nature. The

same can be minimized with the help of minimization tools. The step is not shown separately in the

figure. The minimized logical design is converted to a circuit in terms of the switch level cells from

Geethanjali College of Engg.&Tech. Department of ECE IV B.Tech II-
Sem

DIGITAL DESIGN THROUGH VERILOG HDL Page 24

standard libraries provided by the foundries. The cell based design generated by the tool is the last

step in the logical design process; it forms the input to the first level of physical design [Micheli].

Geethanjali College of Engg.&Tech. Department of ECE IV B.Tech II-
Sem

DIGITAL DESIGN THROUGH VERILOG HDL Page 25

1.4.3 Simulation

The design descriptions are tested for their functionality at every level –

behavioral, data flow, and gate. One has to check here whether all the functions

are carried out as expected and rectify them. All such activities are carried out

by the simulation tool. The tool also has an editor to carry out any corrections to

the source code. Simulation involves testing the design for all its functions,

functional sequences, timing constraints, and specifications. Normally testing

and simulation at all the levels – behavioral to switch level – are carried out by a

single tool; the same is identified as “scope of simulation tool” in Figure 1.5.

Geethanjali College of Engg.&Tech. Department of ECE IV B.Tech II-
Sem

DIGITAL DESIGN THROUGH VERILOG HDL Page 26

Synthesis

With the availability of design at the gate (switch) level, the logical design is complete. The

corresponding circuit hardware realization is carried out by a synthesis tool. Two common

approaches are as follows:

The circuit is realized through an FPGA [Oldfield]. The gate level design description is the

starting point for the synthesis here. The FPGA vendors provide an interface to the synthesis

tool. Through the interface the gate level design is realized as a final circuit. With many synthesis

tools, one can directly use the design description at the data flow level itself to realize the final

circuit through an FPGA. The FPGA route is attractive for limited

volume production or a fast development cycle.

The circuit is realized as an ASIC. A typical ASIC vendor will have his own library of basic

components like elementary gates and flip-flops. Eventually the circuit is to be realized by

selecting such components and interconnecting them conforming to the required design. This

constitutes the physical design. Being an elaborate and costly process, a physical design may call

for an intermediate functional verification through the FPGA route. The circuit realized through

the FPGA is tested as a prototype. It provides another opportunity for testing the design closer

to the final circuit.

1.4.5 Physical Design

A fully tested and error-free design at the switch level can be the starting point for a

physical design [Baker & Boyce, Wolf]. It is to be realized as the final circuit using (typically)

a million components in the foundry’s library. The step-by-step activities in the process are

described briefly as follows:

System partitioning: The design is partitioned into convenient compartmentsor functional

blocks. Often it would have been done at an earlier stage itself and the software design

prepared in terms of such blocks. Interconnection of

the blocks is part of the partition process.

Floor planning: The positions of the partitioned blocks are planned and theblocks are

arranged accordingly. The procedure is analogous to the planning and arrangement of domestic

furniture in a residence. Blocks with I/O pins are kept close to the periphery; those which

interact frequently or through a large number of interconnections are kept close together, and

so on. Partitioning and floor planning may have to be carried out and refined

iteratively to yield best results.

Geethanjali College of Engg.&Tech. Department of ECE IV B.Tech II-
Sem

DIGITAL DESIGN THROUGH VERILOG HDL Page 27

Placement: The selected components from the ASIC library are placed in
position on the “Silicon floor.” It is done with each of the blocks above.

Routing: The components placed as described above are to be interconnectedto the rest of

the block: It is done with each of the blocks by suitably routing the interconnects. Once the

routing is complete, the physical design cam is taken as complete. The final mask for the design

can be made at this stage and the ASIC manufactured in the foundry.

1.4.6 Post Layout Simulation

Once the placement and routing are completed, the performance specifications like silicon

area, power consumed, path delays, etc., can be computed. Equivalent circuit can be

extracted at the component level and performance analysis carried out. This constitutes

the final stage called “verification.” One may have to go through the placement and

routing activity once again to improve performance.

1.4.7 Critical Subsystems

The design may have critical subsystems. Their performance may be crucial to the overall

performance; in other words, to improve the system performance substantially, one may

have to design such subsystems afresh. The design here may imply redefinition of the basic

feature size of the component, component design, placement of components, or routing

done separately and specifically for the subsystem. A set of masks used in the foundry may

have to be done afresh for the purpose.

1.5 ROLE OF HDL

An HDL provides the framework for the complete logical design of the ASIC. All the activities

coming under the purview of an HDL are shown enclosed in bold dotted lines in Figure 1.4.

Verilog and VHDL are the two most commonly used HDLs today. Both have constructs with

which the design can be fully described at all the levels. There are additional constructs

available to facilitate setting up of the test bench, spelling out test vectors for them and

“observing” the outputs from the designed unit.

IEEE has brought out Standards for the HDLs, and the software tools conform to them. Verilog as

an HDL was introduced by Cadence Design Systems; they placed it into the public domain in 1990. It

was established as a formal IEEE Standard in 1995. The revised version has been brought out in

2001. However, most of the simulation tools available today conform only to the 1995 version of the

standard.

Geethanjali College of Engg.&Tech. Department of ECE IV B.Tech II-
Sem

DIGITAL DESIGN THROUGH VERILOG HDL Page 28

Verilog HDL used by a substantial number of the VLSI designers today is the topic of discussion

of the book.

1.6 VERILOG AS AN HDL

Verilog has a variety of constructs as part of it. All are aimed at providing a functionally tested

and a verified design description for the target FPGA or ASIC. The language has a dual function

– one fulfilling the need for a design description and the other fulfilling the need for verifying

the design for functionality and timing constraints like propagation delay, critical path delay,

slack, setup, and hold times [Smith DJ, Wai-Kai].

Verilog as an HDL has been introduced here and its overall structure explained. A widely used

development tool for simulation and synthesis has been introduced; the brief procedural

explanation provided suffices to try out the Examples and Exercises in the text.

1.7 LEVELS OF DESIGN DESCRIPTION

The components of the target design can be described at different levels with the help of the

constructs in Verilog.

1.7.1 Circuit Level

At the circuit level, a switch is the basic element with which digital circuits are built.
Switches can be combined to form inverters and other gates at the next higher level
of abstraction. Verilog has the basic MOS switches built into its constructs, which
can be used to build basic circuits like inverters, basic logic gates, simple 1-bit
dynamic and static memories. They can be used to build up larger designs to
simulate at the circuit level, to design performance critical circuits. Figure 2.1 shows
the circuit of an inverter suitable for description with the switch level constructs of
Verilog.

1.7.2 Gate Level

At the next higher level of abstraction, design is carried out in terms of basic gates.
All the basic gates are available as ready modules called “Primitives.” Each such
primitive is defined in terms of its inputs and outputs. Primitives can be
incorporated into design descriptions directly. Just as full physical hardware can be
built using gates, the primitives can be used repeatedly and judiciously to build
larger systems. Figure 2.2 shows an AND gate suitable for description using the

Geethanjali College of Engg.&Tech. Department of ECE IV B.Tech II-
Sem

DIGITAL DESIGN THROUGH VERILOG HDL Page 29

gate primitive of Verilog. The gate level modeling or structural modeling as it is
sometimes called is akin to building a digital circuit on a bread board, or on a PCB.
One should know the structure of the design to build the model here. One can also
build hierarchical circuits at this level. However, beyond 20 to 30 of such gate
primitives in a circuit, the design description becomes unwieldy; testing and
debugging become laborious.

1.7.3 Data Flow

Data flow is the next higher level of abstraction. All possible operations on signals
and variables are represented here in terms of assignments. All logic and algebraic
operations are accommodated. The assignments define the continuous functioning
of the concerned block. At the data flow level, signals are assigned through the data
manipulating equations. All such assignments are concurrent in nature. The design
descriptions are more compact than those at the gate level. Figure 2.3 shows an A-
O-I relationship suitable for description with the Verilog constructs at the data flow
level.

V
CC

Q2

a

c

b

out

c = a . b

 Q1 in

 Supply0

Figure A simple Inverter circuit at the Figure A simple AND gate representedat the switch level.
 gate level.

1.7.4 Behavioral Level

Behavioral level constitutes the highest level of design description; it is essentially at
the system level itself [Bhaskar]. With the assignment possibilities, looping
constructs and conditional branching possible, the design description essentially
looks like a “C” program. The statements involved are “dense” in function.
Compactness and the comprehensive nature of the design description make the
development process fast and efficient. Figure 2.4 shows an A-O-I gate expressed
in pseudo code suitable for description with the behavioral level constructs of

Geethanjali College of Engg.&Tech. Department of ECE IV B.Tech II-
Sem

DIGITAL DESIGN THROUGH VERILOG HDL Page 30

Verilog.
1.7.5 The Overall Design Structure in Verilog

The possibilities of design description statements and assignments at different
levels necessitate their accommodation in a mixed mode. In fact the design
statements coexisting in a seamless manner within a design module is a significant
characteristic of Verilog. Thus Verilog facilitates the mixing of the above-
mentioned levels of design. A design built at data flow level can be instantiated to
form a structural mode design. Data flow assignments can be incorporated in
designs which are basically at behavioral level.

1.8 CONCURRENCY

In an electronic circuit all the units are to be active and functioning concurrently. The voltages

and currents in the different elements in the circuit can change simultaneously. In turn the logic

levels too can change. Simulation of such a circuit in an HDL calls for concurrency of operation. A

number of activities – may be spread over different modules – are to be run concurrently here.

Verilog simulators are built to simulate concurrency. (This is in contrast to programs in the

normal languages like C where execution is sequential.) Concurrency is achieved by proceeding

with simulation in equal time steps. The time step is kept small enough to be negligible

compared with the propagation delay values. All the activities scheduled at one time step are

completed and then the simulator

 If (a, b, c or d changes)

Compute e as

e a.b c.d

e

 a.b c.d

Figure An A-O-I gate represented as a Figure An A-O-I gate in pseudo
code at data flow type of relationship. behavioral level.
advances to the next time step and so on. The time step values refer to simulation
time and not real time. One can redefine timescales to suit technology as and when
necessary and carry out test runs.

In some cases the circuit itself may demand sequential operation as with data transfer and

memory-based operations. Only in such cases sequential operation is ensured by the appropriate

usage of sequential constructs from Verilog HDL.

1.9 SIMULATION AND SYNTHESIS

The design that is specified and entered as described earlier is simulated for functionality and

fully debugged. Translation of the debugged design into the corresponding hardware circuit

(using an FPGA or an ASIC) is called “synthesis.” The tools available for synthesis relate more

easily with the gate level and data flow level modules [Smith MJ]. The circuits realized from them

Geethanjali College of Engg.&Tech. Department of ECE IV B.Tech II-
Sem

DIGITAL DESIGN THROUGH VERILOG HDL Page 31

are essentially direct translations of functions into circuit elements. In contrast many of the

behavioral level constructs are not directly synthesizable; even if synthesized they are likely to

yield relatively redundant or wrong hardware. The way out is to take the behavioral level

modules and redo each of them at lower levels. The process is carried out successively with each

of the behavioral level modules until practically the full design is available as a pack of modules at

gate and data flow levels (more commonly called the “RTL level”).

1.10 FUNCTIONAL VERIFICATION

Testing is an essential ingredient of the VLSI design process as with any hardware circuit. It has

two dimensions to it – functional tests and timing tests. Both can be carried out with Verilog.

Often testing or functional verification is carried out by setting up a “test bench” for the design.

The test bench will have the design instantiated in it; it will generate necessary test signals and

apply them to the instantiated design. The outputs from the design are brought back to the test

bench for further analysis. The input signal combinations, waveforms and sequences required for

testing are all to be decided in advance and the test bench configured based on the same.

The test benches are mostly done at the behavioral level. The constructs there are flexible

enough to allow all types of test signals to be generated.

In the process of testing a module, one may have to access variables buried inside other

modules instantiated within the master module. Such variables can be accessed through suitable

hierarchical addressing.

 Test Inputs for Test Benches

Any digital system has to carry out a number of activities in a defined manner.
Once a proper design is done, it has to be tested for all its functional aspects. The
system has to carry out all the expected activities and not falter. Further, it should
not malfunction under any set of input conditions. Functional testing is carried out
to check for such requirements. Test inputs can be purely combinational, periodic,
numeric sequences, random inputs, conditional inputs, or combinations of these.
With such requirements, definition and design of test benches is often as
challenging as the design itself.

As the circuit design proceeds, one develops smaller blocks and groups them together to form

bigger circuit units. The process is repeated until the whole system is fully built up. Every stage calls

for tests to see whether the subsystem at that layer behaves in the manner expected. Such testing

calls for two types of observations:

Study of signals within a small unit when test inputs are given to the whole
unit.

Isolation of a small element and doing local test to facilitate debugging.

Geethanjali College of Engg.&Tech. Department of ECE IV B.Tech II-
Sem

DIGITAL DESIGN THROUGH VERILOG HDL Page 32

Verilog has constructs to accommodate both types of observation through a hierarchical

description of variables within.

1.10.1 Constructs for Modeling Timing Delays

Any basic gate has propagation delays and transmission delays associated with it. As the

elements in the circuit increase in number, the type and variety of such delays increase

rapidly; often one reaches a stage where the expected function is not realized thanks to an

unduly large time delay. Thus there is a need to test every digital design for its performance

with respect to time. Verilog has constructs for modeling the following delays:

Gate delay Net delay Path delay

Pin-to-pin delay
In addition, a design can be tested for setup time, hold time, clock-width time specifications, etc.

Such constructs or delay models are akin to the finite delay time, rise time, fall time, path or

propagation delays, etc., associated with real digital circuits or systems. The use of such constructs

in the design helps simulate realistic conditions in a digital circuit. Further, one can change the

values of delays in different ways. If a buffer capacity is increased, its associated delays can be

reduced. If a design is to migrate to a better technology, the delay values can be rescaled. With such

testing, one can estimate the minimum frequency of operation, the maximum speed of response, or

typical response times.

1.10.2 SYSTEM TASKS

A number of system tasks are available in Verilog. Though used in a design description, they

are not part of it. Some tasks facilitate control and flow of the testing process. The values of

signals in a module can be displayed in the course of simulation. The tasks available for the

purpose display them in desired formats. Reading data from specified files into a module and

writing back into files are also possible through other tasks. Timescale can be changed prior to

simulation with the help of specific tasks for the purpose.

A set of system functions add to the flexibility of test benches: They are of three categories:

Functions that keep track of the progress of simulation time
Functions to convert data or values of variables from one format to another Functions to

generate random numbers with specific distributions.

There are other numerous system tasks and functions associated with file operations, PLAs, etc.

1.10.3 PROGRAMMING LANGUAGE INTERFACE (PLI)

Geethanjali College of Engg.&Tech. Department of ECE IV B.Tech II-
Sem

DIGITAL DESIGN THROUGH VERILOG HDL Page 33

PLI provides an active interface to a compiled Verilog module. The interface adds a new

dimension to working with Verilog routines from a C platform. The key functions of the

interface are as follows:

One can read data from a file and pass it to a Verilog module as input. Such data can be test

vectors or other input data to the module. Similarly, variables

in Verilog modules can be accessed and their values written to output devices. Delay values,

logic values, etc., within a module can be accessed and altered. Blocks written in C language can

be linked to Verilog modules.

1.11 MODULE

Any Verilog program begins with a keyword – called a “module.” A module is the name given

to any system considering it as a black box with input and output terminals as shown in Figure

2.5. The terminals of the module are referred to as ‘ports’. The ports attached to a module can

be of three types:

Geethanjali College of Engg.&Tech. Department of ECE IV B.Tech II-
Sem

DIGITAL DESIGN THROUGH VERILOG HDL Page 34

module adder(a, b, . . .p, q, . . . x, y);

output port
 module

inout
port

input port

Figure Representation of a module as black box with its ports.

input ports through which one gets entry into the module; they signify the

input signal terminals of the module.

output ports through which one exits the module; these signify the output

signal terminals of the module.

inout ports: These represent ports through which one gets entry into themodule or exits

the module; These are terminals through which signals are input to the module sometimes; at

some other times signals are output from the module through these.

Whether a module has any of the above ports and how many of each type are present
depend solely on the functional nature of the module. Thus one module may not
have any port at all, another may have only input ports, while a third may have only
output ports, and so on.

All the constructs in Verilog are centered on the module. They define ways of building up,

accessing, and using modules. The structure of modules and the mode of invoking them in a design

are discussed here.

A module comprises a number of “lexical tokens” arranged according to some predefined order.

The possible tokens are of seven categories:

White spaces Comments Operators

Numbers Strings

Identifiers Keywords

The rules constraining the tokens and their sequencing will be dealt with as we progress. For the

present let us consider modules. In Verilog any program which forms a design description is a

“module.” Any program written to test a design description is also a “module.” The latter are often

Geethanjali College of Engg.&Tech. Department of ECE IV B.Tech II-
Sem

DIGITAL DESIGN THROUGH VERILOG HDL Page 35

called as “stimulus modules” or “test benches.” A module used to do simulation has the form shown

in Figure 2.6. Verilog takes the active statements appearing between the “module” statement and

the “endmodule” statement and interprets all of them together as forming the body of the module.

Whenever a module is invoked for testing or for incorporation into a bigger design module, the name

of the module (“test” here) is used to identify it for the purpose.

Geethanjali College of Engg.&Tech. Department of ECE IV B.Tech II-
Sem

DIGITAL DESIGN THROUGH VERILOG HDL Page 36

A digression into design using SSI ICs is in order here. Consider the IC 7430, an eight

input NAND gate. In any design using it, the IC can be looked up on as a black box with eight

input leads and one output lead (Figure 2.7a). Three aspects characterize the IC – its function,

its input leads, and its output lead. Other ICs may have more output leads. A NAND gate

module is defined in an analogous manner in terms of its function, input leads and the output

lead. The module used to describe the circuit here also follows the earlier format; that is, the

“module” statement signifies the beginning of the module, the “endmodule” statement

signifies the end of the module. However, the initial statement “module” has to be more

elaborate with the input and the output ports forming part of it (see Figure).

module test ;

....
stateme

nt1 ;

stateme
nt2 ;

Signifies declaration of
a module Name
assigned to the module

The semicolon ‘;’
signifies termination of
a module statement

...

endmodule Signifies

termination of a module
Individual statements within the module

Figure Structure of a typical simulation module.

I1

I2

O

I7

I8

NAND gate
Figure (a) Eight input NAND gate (IC 7430). Gate

proper with terminals.

Geethanjali College of Engg.&Tech. Department of ECE IV B.Tech II-Sem

DIGITAL DESIGN THROUGH VERILOG HDL Page 37

Signifies declaration of a module(keyword)

Name assigned to the module

Signifies the set of I/O leads to the module

module nand_gate (O, I1, I2, I3, I4, I5, I6, I7, I8) ;

....

statement1 ;

statement2 ;

...

endmodule

Signifies termination of a module (keyword)

Individual statements within the module

The semi-colon ‘;’ signifies termination of a module statement

Figure (b) Eight input NAND gate (IC 7430). Structure of the gate module.

The same type of IC – 7430 – may be repeatedly used in a circuit. Each time it is used, a different

name is assigned to it in the design sheet. Part of such a typical design sheet will look as in Figure

2.8. The associated table (Table 2.1) allows us to identify each type of IC to be used and put in its

proper place. An automated design description can use a module defined above, repeatedly in a

number of places as in the circuit of Figure . Each such use is an “instantiation.” A typical

instantiation of the module defined above has the form shown in Figure 2.9. The following

observations are in order here:

 Table Partial list of IC numbers and their types for a typical design

 IC No IC1 IC2 IC3 … IC9 …

 IC type 7430 7430 … 7405 …

I1

IC2

o1

Geethanjali College of Engg.&Tech. Department of ECE IV B.Tech II-Sem

DIGITAL DESIGN THROUGH VERILOG HDL Page 38

IC1
a

I8

 IC3

o2

Figure Part of the circuit diagram of a typical digital circuit.

Name assigned to the

 instantiation

 Name of the output lead

 Names of the input leads

nand_gate ic1 (b1, a1, a2, ...a8) ;
A typical instantiation of the

NAND gate in Figure 2.2

Another instantiation of the NAND

nand_gate ic2(b2, c1, c2, ...c8) ;

gate

Figure Instantiations of modulenand_gatein another module.

The designer has defined a specific function within a module; the module is
assigned the name “nand_gate.”

The nand_gate can be invoked (instantiated) by him in a design as many
times as desired.

Each instantiation has to be assigned a separate identifier name by him (called “IC1”, “IC2”,

etc.). As part of the instantiation declaration, the input and output terminals are to be defined.

The convention followed is to stick to the same order as in the module declaration. It is further

illustrated in Figure 2.9.

Some modules may have a large number of ports. Sticking to the order of the ports in an

instantiation is likely to cause (human) errors. An alternative (and sometimes more convenient)

form of instantiation is also possible – shown in Figure 2.10. The terminal identifications are explicit

(though elaborate) here. Further one need not stick to the order of the ports as they appear in the

Geethanjali College of Engg.&Tech. Department of ECE IV B.Tech II-Sem

DIGITAL DESIGN THROUGH VERILOG HDL Page 39

module definition. With such a form of port assignments, the possibility of errors is considerably

reduced.

The following aspects of the modules and their instantiation are noteworthy:

Each module can be defined only once.
Module definitions are to be done independently. One module cannot be

defined inside another – they cannot be nested.

Any module can be instantiated inside another any number of times. Each instantiation has

to be done with a separate name assigned to it.

The various constructs and features available in Verilog are discussed in the following chapters.

However, certain conventions and constructs essential for the progress of the book at this stage are

discussed in Chapter 3.

a1

I1

nand gate module O

b

 (a)

IC1

a8 I8

nand_gate ic1(O(b), I8(a8), ... I1(a1)); (b)

Figure A typical circuit block and (b) its instantiation.

1.12 SIMULATION AND SYNTHESIS

A variety of Software tools related to VLSI design is available. We discuss here two of them
directly relevant to us – Modelsim and Leonardo Spectrum of Mentor Graphics. Modelsim has
been used to simulate the designs. Simulation results presented for the variety of examples
discussed in the book have been obtained using it. Leonardo Spectrum has been used to obtain
the synthesized circuits presented. We would like to draw the attention of the readers to the
following in this context:

Geethanjali College of Engg.&Tech. Department of ECE IV B.Tech II-Sem

DIGITAL DESIGN THROUGH VERILOG HDL Page 40

Only the essential aspects of the tools are presented – those essential for
the progress of the book.

For more details of the tools and the variety of facilities they offer, one

can refer to the respective user manuals and the Help menus.

Tools from other sources are similar in essentials. Any of them can be used.

1.12.1 Use of Modelsim SE 5.5

The procedure to invoke the tool and use it is briefly described here. The tool can
be used to prepare a source file, edit and compile it, and simulate the compiled
version.
Editing and Compilation
Open the Modelsim Window. We get the following menus listed at the top:

 File Edit Design View Project Run Compare Macro

Click on “View.” We get the following menus:

 All

Hide Workspace

Sources

Structure

Variables

Signals

List

Process

Wave

Data flow

Geethanjali College of Engg.&Tech. Department of ECE IV B.Tech II-Sem

DIGITAL DESIGN THROUGH VERILOG HDL Page 41

Data sets

New

 Other

Click on “Source.” The “Source” window opens with the following set of menus listed at the

top:

 File Edit Object Options Window

Click on “File” option. We get the following options:

 New

 Open

 Use source

 Source directory

 Properties

 Save

 Save as

 Compile

 Close

Click on “New.” We get the following options:

 VHDL

 Verilog

Other

Geethanjali College of Engg.&Tech. Department of ECE IV B.Tech II-Sem

DIGITAL DESIGN THROUGH VERILOG HDL Page 42

Click on “Verilog.” A “Source_edit-new.v” opens.
The Verilog design can be keyed in. It forms the source file. The source file considered in

various examples in the book can be created in this manner

(e.g., Example 4.2 and Figure 4.4).

Click on “File” option. We get a pull down menu. Click on “Save as.”

Select a Directory of your choice. Give a suitable filename with extension “.v” (Say

“demo.v”). Click on “Save” and save the file. The source (design) file has been created and

saved. Now it is ready for compilation.

Click on “Compile.” “Compile HDL Source Files” window opens. File name “demo” is

displayed. Library “Work” is displayed. The selected file (demo.v) will be compiled and loaded

into Work. The lines of display in the

main window confirm this.

If the source file has any syntax or logical errors, compilation will not take place. The errors

will be indicated in the main window. The source file can be opened (by clicking on the main

menu) and edited. Once again compilation can be attempted. The procedure has to be repeated

iteratively until all the errors in the source file have been removed and compilation is

successfully completed.

Simulation
In the main window click on “Design” pulldown menu.

In the options displayed, click on “Load Design.” The following options are displayed at the

top:–

 Design VHDL Verilog Libraries SDF

Select “Design” and click on it. A small window appears on the screen. “Library: Work” is

displayed, implying that the working library is open. The module name “demo” is displayed

under it. In the normal course the names of all the compiled files will be listed alphabetically one

below the other. The

specific file to be simulated is to be selected by clicking on the same.

The “Load” button below gets highlighted. Click on it. The design gets
loaded and is ready for simulation run.

Click the “Run” menu in the Modelsim main window. Select 100 ns runtime. The design runs

for 100 ns (by default) and the output list appears in the main window. The listing can be

selected, copied, and pasted to another file. The simulation results for the various examples in

Geethanjali College of Engg.&Tech. Department of ECE IV B.Tech II-Sem

DIGITAL DESIGN THROUGH VERILOG HDL Page 43

the book have been obtained in this manner. If necessary, the time duration of simulation can

be altered in

the main window.

Observing Waveforms
Simulation results can alternately be viewed as waveforms with the following
procedure:

In the main Modelsim window click on “Signals.” The signals window opens with the

following options displayed at the top:

 File Edit View Window

Geethanjali College of Engg.&Tech. Department of ECE IV B.Tech II-Sem

DIGITAL DESIGN THROUGH VERILOG HDL Page 44

Click on the “View” pulldown menu. We get the options as shown below:

Wave List Log Filter

Amongst the options available, click on “Wave.” We get the following options:

Selected Signals Signals in Region Signals in Design

Select “Signals in Design.” The “Waveform Window” opens and shows the
signals in the design. The Window has a “Run” option.

Click on “Run” to run the design and get the waveforms displayed.
The waveforms shown as simulated outputs for different examples in the book have

been obtained in this manner.

One can practice simulation of a few examples given in the book.

Subsequently options available at the different stages can be tried, and the tool with its full

versatility can be mastered.

1.12.2 Synthesis

Conversion of the code into hardware logic and fitting it into an FPGA or
ASIC to realize the circuit is termed “Synthesis.” We have used the Mentor
Graphics Synthesis tool called “Leonardo Spectrum” for the purpose. The
synthesis procedure is briefly described here:
Double click on “Leonardo Spectrum 2000.1b.”

The Main Window named “Examplar Logic – Leonardo Spectrum Level 3”opens with

a pulldown menu as follows:

File Edit View Tools Window Help

Click on “File”. A pulldown menu opens with options such as the
following:

Geethanjali College of Engg.&Tech. Department of ECE IV B.Tech II-
Sem

DIGITAL DESIGN THROUGH VERILOG HDL Page 45

New

Open

Save

…

…

Select “New.” A window named “untitled” opens. We can type in a new program and save it

as a file with a name assigned to it (Say “name.v”) in a directory of our choice. The procedure is

similar to that followed above to create and save a new file with extension “.v” (signifying that it

is a Verilog file). The file is now ready for synthesis. However, it is always preferable to simulate a

file and be fully satisfied with at the simulation stage itself before

synthesizing it.

Click on the “Tools” menu on the main window. A set of options appear on
the screen.

Select “Quick Set up.” A window of the type shown in Figure 2.11 appears.
All the settings necessary to complete the synthesis can be carried out with it. Click on “Open

files.” Select the Verilog source file to be synthesized. It will

be visible under “Input” in the figure.

Under “Technology” select “FPGA.” Select a device of (say) Xilinx – for example, XC4000XL.

The selected Xilinx device name is displayed under

‘Device’.

Select a “Clock Frequency” – say 10 MHz.

Click on the “Run Flow” button. The synthesis program runs and completes
the synthesis. Summarized results will be displayed on the screen.

If the coding is correct and synthesizable, the display “Ready” appears highlighted at the

bottom left-hand corner. If not, error details will be displayed. The program may be rectified and

synthesis attempted again. Icons for “RTL Schematic”, “Gate Level Schematic” and “Critical Path

Schematic” at the top become active.

We can click on each of them in succession. The circuit schematic can be viewed at the RTL

level or the gate level. The critical path can be viewed – it represents the path that takes the

maximum time of operation on a pin-to-pin basis. It sets the upper limit to the speed of

operation of the circuit.

Geethanjali College of Engg.&Tech. Department of ECE IV B.Tech II-
Sem

DIGITAL DESIGN THROUGH VERILOG HDL Page 46

The synthesized circuits shown for the different examples in the book have been obtained in this

manner. The device selected to synthesize the design, is called the “Target Device.” One can select

any other suitable target device of Xilinx or other FPGA vendors like Actel, Altera, Cypress, Lattice,

Lucent, Quicklogic, etc.

The program generates a summary of the synthesis activity and displays it as a “Sum File.” It gives

a report on the utilization of the “Target Device” by the

Geethanjali College of Engg.&Tech. Department of ECE IV B.Tech II-
Sem

DIGITAL DESIGN THROUGH VERILOG HDL Page 47

 Technology Input

ASIC

FPGA

 Device

Speed grade

open files

Working directory

Clock Frequency MHz

Run flow Help

Figure 2.11 The Window in Leonardo Spectrum to do the settings for synthesis.

design that was synthesized. It also generates and displays some timing
information like “Critical Path Timing.”

1.13 TEST BENCHES

Any digital circuit that has been designed and wired goes through a
testing process before being declared as ready for use. Testing involves
studying circuit behavior under simulated conditions for the following:

Check and ensure that all functions are carried out as desired. It is the test for the

static behavior of the circuit. A set of logic input values are applied at

selected points and the logic values at another set of points observed.

Check and ensure that all the functional sequences are carried out as desired. It is

one of the tests for the dynamic behavior of the circuit. It may call for the

Geethanjali College of Engg.&Tech. Department of ECE IV B.Tech II-
Sem

DIGITAL DESIGN THROUGH VERILOG HDL Page 48

generation of specific input sequences with respect to time, applying them to the

circuit and observing selected outputs.

Check for the timing behavior: One tests for the propagation and other types of

delays here. A variety of tests may have to be carried out. It may involve observation

of variations in the signals at selected points, measuring the time delay between

specified events, measuring pulse widths, and so on.

Verilog has the provision for all the above. One sets up a “test bench” in software and

caries out a simulated test. The facilities required to set up test benches are discussed in

detail in Chapters 7 and 8. However, the need to test the designs in Chapters 4 to 6

warrants a brief introduction to them here; only the essentials are discussed. Further, the

“test benches” up to Chapter 7 are kept simple and easily understandable.

Simulated testing is a time-based activity. It is usually carried out in simulated time.

With any simulation tool the simulation progresses through equal simulation time steps.

The time step can be 1 fs, 1 ps, 1 ns and so on. In the text the default value is taken as 1

ns. In some cases it is mentioned explicitly; in other situations it is implicit, that is,

whenever ‘time step’ is mentioned, it implies 1ns of simulation time. If required, the

simulation time step can be altered (see Chapter 11).

Consider the group of statements below reproduced from the test bench of Figure :

Initial

Begin

a1 = 0;

a2 = 0; #3 a1 = 1; #1 a1 = 0; #2 a2 = 1; #4 a1 = 1; #3 a2 = 0; #1 a2 = 1; end

and g1(b, a1, a2);

initial $monitor ($time, “a1 = %b, a2 = %b, b = %b”’ a1,

a2, b);#100 $finish;

The keyword initial is followed by a sequence of statements between

the keywords begin and end. Usually the initial banner signifies a

setting done on a once or a “once for all” basis. The “# 3” implies a time
delay or wait time of 3 time steps in simulation. Thus the sequence implies
the following:

At 0 simulation time the logic variables a1 and a2 are assigned the logic level 0.

Geethanjali College of Engg.&Tech. Department of ECE IV B.Tech II-
Sem

DIGITAL DESIGN THROUGH VERILOG HDL Page 49

With a delay of 3 ns a1 is reassigned the logic value of 1.

With a further delay of 1 ns – that is, at the 4th ns - a1 is reverted to the logic
level 0.

Similarly at the 6th, 10th, 13th and 14th ns values of simulation time, further
changes are made to a1 and a2.

Note that every time value specified here is an increment in simulation time.

The values of a1 and a2 are not changed beyond the 14th ns. The statement

initial # 100 $finish;
implies that the simulation is to be continued up to the 100th ns of simulation
time and then stopped.

The above constitutes the generation of the test sequence for testing. Such test signals are

applied to the designed circuit through instantiation; the statement

and g1(b, a1, a2);

implies as much. The statement
initial $monitor ($time, “a1 = %b, a2 = %b, b = %b”’ a1, a2, b);

monitors a1, a2, and a3 for changes; whenever any of them changes, all of them
are sampled and the sampled values displayed.
Summarizing testing constitutes three activities:

Generation of the test signals – under the “initial” banner

Application of the test signal to the circuit under test – through instantiation Observing

selected signal values – through the $monitor statement

Many of the test benches for the subsequent examples are also structured in a
similar fashion. Changes are kept to the minimum to ensure focus on the example
concerned. As and when such changes are made, the same is explained.

Geethanjali College of Engg.&Tech. Department of ECE IV B.Tech II-
Sem

DIGITAL DESIGN THROUGH VERILOG HDL Page 50

2

LANGUAGE CONSTRUCTS AND CONVENTIONS IN VERILOG

 INTRODUCTION

The constructs and conventions make up a software language. A clear understanding
and familiarity of these is essential for the mastery of the language. Verilog has its
own constructs and conventions [IEEE, Sutherland]. In many respects they
resemble those of C language [Gottfried]. We discuss the constructs and
conventions essential to the progress of the book. More of these follow in the
ensuing chapters.

Any source file in Verilog (as with any file in any other programming language) is made up of a

number of ASCII characters. The characters are grouped into sets — referred to as “lexical tokens.” A

lexical token in Verilog can be a single character or a group of characters. Verilog has 7 types of

lexical tokens

 operators, keywords, identifiers, white spaces, comments, numbers, and strings. Operators are

introduced in Chapter 6. All the other tokens are discussed here. Some other aspects of Verilog

essential to the progress of the book are also discussed subsequently.

2.1.1 Case Sensitivity

Verilog is a case-sensitive language like C. Thus sense, Sense, SENSE, sENse,… etc.,
are all treated as different entities / quantities in Verilog.

2.2 KEYWORDS

The keywords define the language constructs. A keyword signifies an activity to be
carried out, initiated, or terminated. As such, a programmer cannot use a keyword
for any purpose other than that it is intended for. All keywords in Verilog are in
small letters and require to be used as such (since Verilog is a case-sensitive
language). All keywords appear in the text in New Courier Bold-type letters.

Examples
module signifies the beginning of a module definition. endmodule signifies

the end of a module definition. begin signifies the beginning of a block of

statements. end signifies the end of a block of statements.

if signifies a conditional activity to be checked while signifies a conditional

activity to be carried out.
A list of keywords in Verilog with the significance of each is given in Appendix A.

Geethanjali College of Engg.&Tech. Department of ECE IV B.Tech II-
Sem

DIGITAL DESIGN THROUGH VERILOG HDL Page 51

2.3 IDENTIFIERS

Any program requires blocks of statements, signals, etc., to be identified with an
attached nametag. Such nametags are identifiers. It is good practice for us to use
identifiers, closely related to the significance of variable, signal, block, etc., concerned.
This eases understanding and debugging of any program.

e.g.,clock,enable,gate_1, . . .
There are some restrictions in assigning identifier names. All characters of the alphabet or an
underscore can be used as the first character. Subsequent characters can be of alphanumeric
type, or the underscore (_), or the dollar ($) sign – for example

name, _name. Name, name1, name_$, . . . all these are allowed asidentifiers

name aa not allowed as an identifier because of the blank (“name” and “aa”are
interpreted as two different identifiers)

$name not allowed as an identifier because of the presence of “$” as the
firstcharacter.

1_name not allowed as an identifier, since the numeral “1” is the firstcharacter

@name not allowed as an identifier because of the presence of the character“@”.
A+b not allowed as an identifier because of the presence of the character “+”.

An alternative format makes it is possible to use any of the printable ASCII characters in an identifier. Such

identifiers are called “escaped identifiers”; they have to start with the backslash (\) character. The character set
between the first backslash character and the first white space encountered is treated as an identifier. The
backslash itself is not treated as a character of the identifier concerned.

Examples

\b=c \control-signal\&logic

\abc // Here the combination “abc” forms the identifier.
It is preferable to use the former type of identifiers and avoid the escaped identifiers;
they may be reserved for use in files which are available as inputs to the design from
other CAD tools.

2.4 WHITE SPACE CHARACTERS

Blanks (\b), tabs (\t), newlines (\n), and formfeed form the white space characters
in Verilog. In any design description the white space characters are included to
improve readability. Functionally, they separate legal tokens. They are introduced
between keywords, keyword and an identifier, between two identifiers, between
identifiers and operator symbols, and so on. White space characters have
significance only when they appear inside strings.

2.5 COMMENTS

Geethanjali College of Engg.&Tech. Department of ECE IV B.Tech II-
Sem

DIGITAL DESIGN THROUGH VERILOG HDL Page 52

It is a healthy practice to comment a design description liberally – as with any other
program. Comments are incorporated in two ways. A single line comment begins
with “//” and ends with a new line – for example

module d_ff(Q,dp,clk); //This is the design description of a D flip-flop.

//Here Q is the output.

// dp is the input and clk is the clock.
One can incorporate multiline comments also without resorting to “//” at every
line. For such multiline comments “/*” signifies the beginning of a comment and
“*/” its end. All lines appearing between these two symbol combinations are
together treated as a single block comment – for example

module d_ff(Q,dp,clk);
/* This module forms the design description of a d_flip_flop wherein Q is the output of the flip-

flop ,
dp is the data input and clk the clock input*/

Multiline comments cannot be nested. For example, the following comment is not valid.

/*The following forms the design description of a D flip-flop /*which can be modified to form other types of
flip-flops*/ with clock and data inputs.*/

A valid alternative can be as follows: -

/*The following forms the design description of a D flip-flop (which can be modified to form other types of flip-
flops) with clock and data inputs.*/

2.6 NUMBERS

Frequently numbers need to be specified in a design description. Logic status of
signal lines, buses, delay values, and numbers to be loaded in registers are examples.
The numbers can be of integer type or real type.

2.6.1 Integer Numbers

Integers can be represented in two ways. In the first case it is a decimal number –
signed or unsigned; an unsigned number is automatically taken as a positive number.
Some examples of valid number representations of this category are given below:
2

25

253

 253

The following are invalid since nondecimal representations are not permissible.
2a

Geethanjali College of Engg.&Tech. Department of ECE IV B.Tech II-
Sem

DIGITAL DESIGN THROUGH VERILOG HDL Page 53

B8

 2a

 B8

Normally the number is taken as 32 bits wide. Thus all the following numbers are
assigned 32 bits of width:
2
25253

 2

 25

 253

If a design description has a number specified in the form given here, the circuit
synthesizer program will assign 32 bits of width to it and to all the related circuits.
Hence all such number specifications – despite their simplicity – may be avoided in
design descriptions. Number representation in this form may preferably be restricted
to test benches.

The alternate form of number representation is more specific – though elaborate. The number

can be specified in binary, octal, decimal, or hexadecimal form. The representation has three tokens

with an optional sign preceding it. Figure 3.1 shows typical number representations with the

significance of each field explained separately.

- 8 ‘h f 4

This field signifies the value of the number. For binary numbers the characters 0, 1, x, z can

be used to form the value.

For octal numbers the numerals 0 to 7, x, z can be used to form the value.

For decimal numbers all the numerals, x, z can be used to form the value.

For hex numbers all the numerals, a, b, c, d, e, f, x, z can be used to form the numbers.

This combination - the single quote character followed by b, o, d or h - specifes the base of

the number. The character signifies binary, octal, decimal or hexadecimal base. If this field is

absent, the number is taken as a dcimal one.

If present, the decimal number in this field signifies the bit width of the number. If absent

the width is assigned a default value by the compiler.

Geethanjali College of Engg.&Tech. Department of ECE IV B.Tech II-
Sem

DIGITAL DESIGN THROUGH VERILOG HDL Page 54

This field(optional) is for the sign bit. It is allowed only with the

decimal numbers. If absent, the number is taken as positive. For a number with a negative sign

the number is represented in 2’s complement form

Figure Representation of a number in Verilog: One can use capital letters instead
ofsmall letters in the last two fields.

Observations:
The characters used to specify the base number, the sign or the magnitude can be in either

case (Thus A, B, C, D, E, or F can be used in place of a, b, c, d,e, or f, respectively, to specify

the concerned hex digit.XorZcan be used in

place of x or z value, respectively).

The single quote character in the base field has to be immediately followed by the character

representing the base. Intervening white spaces are not allowed.

However, such white spaces can precede the magnitude field. Negative numbers are

represented in 2’s complement form.

The question mark character – “?” – can be used in place of z. The underscore character can

be used anywhere after the first character. It adds to

the readability. It is normally ignored.

If the number size is smaller than the size specified, the size is made up by padding 0’s to the

left. However, if the leftmost bit is a x or z, the same is

padded to the left.

Left truncation and right extension can often be confusing. It is preferable to specify the

numbers fully.

Table 3.1 shows the format of specifications of the integer type numbers along with
illustrative examples.

2.6.2 Real Numbers

Real numbers can be specified in decimal or scientific notation. The decimal
notation has the form

 a.b

where a, b, the negative sign, and the decimal point have the usual significance. The

fields a and b must be present in the number. A number can be specified in
scientific notation as

Geethanjali College of Engg.&Tech. Department of ECE IV B.Tech II-
Sem

DIGITAL DESIGN THROUGH VERILOG HDL Page 55

4.3e2

where 4.3 is the mantissa and 2 the exponent. The decimal equivalent of this

number is 430. Other examples of numbers represented in scientific notation are –

4.3e2, –4.3e–2, and 4.3e–2. The representations are common.

2.7 STRINGS

A string is a sequence of characters enclosed within double quotes. A string must be
contained on a single line; that is, it cannot be carried over to two lines with a

Geethanjali College of Engg.&Tech. Department of ECE IV B.Tech II-
Sem

DIGITAL DESIGN THROUGH VERILOG HDL Page 56

 Table Different ways of number representations in Verilog

 Representation Remarks

33 Both of these represent decimal numbers of unspecified size –

normally interpreted by Verilog as 32 bitwide, i.e., 0000 0000 0000

‘d33

 0000 0000 0000 0010 0001

 9’d439
All these represent 3 digit decimal numbers. D&d both specify

9’D439

 decimal numbers. “_” (underscore) is ignored

9’D4_39

 9’b1_1011__1x01 All these represent binary numbers of value 11011x01. B& b

 9’b11011x01 specify binary numbers. “_” is ignored. x signifies the concerned

 9’B11011x01 bit to be of unknown value.

 9’o123 All these represent 9-bit octal numbers. The binary equivalents are

 9’O123 001 010 011,

 9’o1x3 001 010 011, 001 xxx 011, 001 010 zzz respectively. z signifies

 9’o12z the concerned bits to be in the high impedance state.

 ‘o213 An octal number of unspecified size having octal value 213.

 8’ha5

 8’HA5 All these are 8 bit-wide-hex numbers of hex value a5h. The

 8’hA5 equivalent binary value is 1010 0101.

 8’ha_5

 A 11 bit number with a hex assignment. Its value is 000 1011 0000.

 11’hb0 The number of bits specified is more than that indicated in the value

 field. Enough zeros are padded to the left as shown.

 9’hza A hex number of 9 bits. Its value is taken as zzzzz 1010.

 5’hza A 5-bit hex number. Its value is taken as z 1010.

5’h?a

 A 5-bit hex number. Its value is taken as z 1010. ‘?’ is another

 representation for ‘z’.

 -5’h1a Negative numbers. Negative numbers are represented in 2’s

 -3’b101 complement form.

-4’d7 A 4 bit negative number. Its value in 2’s complement form is 7.

Thus the number is actually – (16 – 7) = –9.

carriage return. Special characters are specified by preceding them with the “\”
character. Verilog treats a string as a sequence of ASCII characters – for example,
“This is a string”
“This string is one \t with a gap in between”

“This is called a \“string\””.
When a string of ASCII characters as above is an operand in an expression, it is
treated as a binary number. This binary number is formed by replacing each ASCII
character by 8 bits – a 0 bit followed by the 7-bit ASCII equivalent – and treating the
resulting binary sequence as a single binary number. For example, the statement
(with P defined as a 32-bit vector beforehand)
P = “numb”
assigns the binary value
0110 1110 0111 0101 0110 1101 0110 0010
to P (0110 1110, 0111 0101, 0110 1101 and 0110 0010 are the 8-bit equivalents of

Geethanjali College of Engg.&Tech. Department of ECE IV B.Tech II-
Sem

DIGITAL DESIGN THROUGH VERILOG HDL Page 57

the letters n, u, m, and b, respectively).

2.8 LOGIC VALUES

Signal lines, logic values appearing on signal lines, etc., can normally take two logic
levels:
1 signifies the 1 or high or true level 0 signifies the 0 or low or false level.

Two additional levels are also possible – designated as x and z. Here x represents an unknown or

an uninitialized value. This corresponds to the don’t-care case in logic circuits. z represents / signifies

a high impedance state. This is possible when a signal line is tri-stated or left floating. The following

are noteworthy here:

When a variable in an expression is in the z state, the effect is the same as it having z value.

But when an input to a gate is in the z state (see Chapter 4), it

is equivalent to having the x value.

The MOS switches discussed in Chapter 10 form an exception to the above. If the input to a

MOS switch is in the z state, its output too remains at the z

state.

With a few exceptions all data types in Verilog can take on all the 4 logic values or levels. The

event (see Section 8.11) is an exception to this. It cannot store any value. The trireg cannot

take on the z value (see Chapter 5).

A logic state can have a “strength” associated with it. It is a quantitative
representation of the internal impedance value of the corresponding hardware
circuit; a change in the internal impedance is reflected as a corresponding change in
the strength level. Whenever the logic values from two sources are combined, there
can be a conflict and the resulting contention has to be resolved. The strength values
are discussed below.

Geethanjali College of Engg.&Tech. Department of ECE IV B.Tech II-
Sem

DIGITAL DESIGN THROUGH VERILOG HDL Page 58

2.9 STRENGTHS

The logic levels are also associated with strengths. In many digital circuits, multiple
assignments are often combined to reduce silicon area or to reduce pin-outs. To
facilitate this, one can assign strengths to logic levels. Verilog has eight strength
levels – four of these are of the driving type, three are of capacitive type and one
of the hi-Z type. Details are given in Table 3.2 (see also Section 5.4).

When a signal line is driven simultaneously from two sources of different strength

levels, the stronger of the two prevails. A few illustrative examples are considered here.

If a signal line a is driven by two sources – b at 1 level with strength “strong1”

and c at level 0 with strength “pull0”– a will take the value 1.

Details of strengths in Verilog

 Strength

Strength
 level

Specification

 (signifies
Abbreviation

Element modeled

 name inverse of keyword

 source

 impedance)

 Supply
7

 Supply1 Su1 Power supply

 drive

Supply0

Su0

connection

Strong Strong1 St1 Default gate and

6
assign output

drive

Strong0

St0

 strength

Pull drive 5

 Pull1 Pu1 Gate and assign

Pull0

Pu0

 output strength

 Large
4

 Large1 La1 Size of trireg net

 capacitor

Large0

La0

capacitor

Weak drive 3

 Weak1 We1 Gate and assign

Weak0

We0

 output strength

 Medium
2

 Medium1 Me1 Size of trireg net

 capacitor

Medium0

Me0

capacitor

 Small
1

 Small1 Sm1 Size of trireg net

 capacitor

Small0

Sm0

capacitor

 High
0

 Highz1 Hi1 Tri-stated line

 impedance

Highz0

Hi0

Geethanjali College of Engg.&Tech. Department of ECE IV B.Tech II-
Sem

DIGITAL DESIGN THROUGH VERILOG HDL Page 59

If a signal line a is driven by two sources – b at 1 level with strength
“pull1” and c at level 0 with strength “strong0,” a will take the value 0. If a signal line a

is driven by two sources – b at 1 level with strength

“strong1” and c at level 0 with strength “strong0,” a will take the value

x (indeterminate).

If a signal line a is driven by two sources – b at 1 level with strength “weak1” and c at level 0

with strength “large0,” a will take the value 0. (Note that large signifies a capacitive drive on

a tri-stated line whereas weak signifies a gate / assigned output drive with a high source

impedance;despite this, due to the higher strength level, the large signal prevails.)

The significance of strengths is further explained in Chapter 5.

2.10 DATA TYPES

The data handled in Verilog fall into two categories:

(i) Net data type

(ii) Variable data type

The two types differ in the way they are used as well as with regard to their respective hardware

structures. Data type of each variable or signal has to be declared prior to its use. The same is valid

within the concerned block or module.

2.10.1 Nets

A net signifies a connection from one circuit unit to another. Such a net carries the
value of the signal it is connected to and transmits to the circuit blocks connected to
it. If the driving end of a net is left floating, the net goes to the high impedance state.
A net can be specified in different ways.

wire: It represents a simple wire doing an interconnection. Only one output isconnected to

a wire and is driven by that.

tri: It represents a simple signal line as a wire. Unlike the wire, a tri can bedriven by more

than one signal outputs.

Functionally, wire and tri are identical. Distinct nomenclatures are provided for

the convenience of assigning roles.
2.10.2 Variable Data Type

A variable is an abstraction for a storage device. It can be declared through the

Geethanjali College of Engg.&Tech. Department of ECE IV B.Tech II-
Sem

DIGITAL DESIGN THROUGH VERILOG HDL Page 60

keyword reg and stores the value of a logic level: 0, 1, x, or z. A net or wire

connected to a reg takes on the value stored in the reg and can be used as input

to other circuit elements. But the output of a circuit cannot be connected to a reg.

The value stored in a reg is changed through a fresh assignment in the program.

time, integer, real, and realtime are the other variable types of

data;these are dealt with later.

2.11 SCALARS AND VECTORS

Entities representing single bits — whether the bit is stored, changed, or transferred
— are called “scalars.” Often multiple lines carry signals in a cluster – like data bus,
address bus, and so on. Similarly, a group of regs stores a value, which may be

assigned, changed, and handled together. The collection here is treated as a “vector.”

Figure 3.2 illustrates the difference between a scalar and a vector. wr and rd are two

scalar nets connecting two circuit blocks circuit1 and circuit2. b is a 4-bit-wide

vector net connecting the same two blocks. b[0], b[1],b[2], and b[3] are the

individual bits of vector b. They are “part vectors.”
A vector reg or net is declared at the outset in a Verilog program and hence treated as such. The

range of a vector is specified by a set of 2 digits (or expressions evaluating to a digit) with a colon in

between the two. The combination is enclosed within square brackets.

 wr & rd are scalars

 wr

 rd

Circuit 1 Circuit 2
 b[0]
 b[1]
 b[2]
 b[3]

part vectors
4-bit-wide vector b

Figure Illustration of scalars and vectors.

Examples:
wire[3:0]a; /*ais a four bit vector of net type; the bits are designated asa[3], a[2], a[1] and

a[0]. */

reg[2:0]b; /*bis a three bit vector of reg type; the bits are designated asb[2], b[1] and

b[0]. */

reg[4:2]c; /*cis a three bit vector of reg type; the bits are designated asc[4], c[3] and

c[2]. */

Geethanjali College of Engg.&Tech. Department of ECE IV B.Tech II-
Sem

DIGITAL DESIGN THROUGH VERILOG HDL Page 61

wire[-2:2] d ;/*dis a 5 bit vector with individual bits designated asd[-2],d[-1], d[0], d[1] and

d[2]. */

Whenever a range is not specified for a net or a reg, the same is treated as a scalar – a single bit

quantity. In the range specification of a vector the most significant bit and the least significant bit can

be assigned specific integer values. These can also be expressions evaluating to integer constants –

positive or negative.

Normally vectors – nets or regs – are treated as unsigned quantities. They have to be

specifically declared as “signed” if so desired.

Examples

wire signed[4:0]num; //numis a vector in the range -16 to +15. reg

signed [3:0]num_1; //num_1 is a vector in the range -8 to +7.

2.12 PARAMETERS

In some designs, certain parameter values are not committed at the outset.
Proportionality constants, frequency-scaling levels, number of taps in digital filters,
etc., are typical examples. There are also situations where the size of the design is left
open and decided at a later stage. Bus width, LIFO depth, and memory size are such
quantities which may be committed later. All such constants can be declared as
parameters at the outset in a Verilog module, and values can be assigned to them; for
example,

parameter word_size= 16;

parameter word_size= 16,mem_size= 256;

Such parameter assignments are made at compiler time. The parameter values
cannot be changed (normally) at runtime. However, a parameter that has been
assigned a value in a module definition can have its value changed at runtime – that
is, when the module is used at runtime in some other design (i.e., instantiated) or
when it is tested. Such modifications are carried out through a “defparameter”

statement. The parameter assignment done as part of parameter declaration can have
the appropriate constant on the right-hand side of the assignment statement, as was
the case above. The assignment can also have algebraic expressions on the right
hand side. Such expressions can involve constants and other parameters declared
already; for example

Parameter word_size= 16,factor= word_size/2;

2.13 MEMORY

Different types and sizes of memory, register file, stack, etc., can be formed by
extending the vector concept. Thus the declaration

Reg [15:0]memory[511:0];

Geethanjali College of Engg.&Tech. Department of ECE IV B.Tech II-
Sem

DIGITAL DESIGN THROUGH VERILOG HDL Page 62

declares an array called “memory”; it has 512 locations. Each location is 16 bits wide.
The value of any chosen location can be assigned to a selected register or vice versa;
this constitutes memory reading or writing [see Example 8.10]. Theindex used to
refer a memory location can be a number or an algebraic expression which reduces
to an integral value – positive, zero, or negative. As an example, consider the
assignment statement

B = mem[(p-q)/2];

The simulator first evaluates (p - q)/2 (which should be an integer): Let it reduce to

3. Then the data stored at mem[3] is assigned to B. Stack pointer, program counter,
index register, etc., can be implemented through the above concept. Different types
of memory addressing like indirect, indexed, etc., can also be accommodated. Page
addressing can be accomplished by a slight adaptation of the concept.

2.14 OPERATORS

Verilog has a number of operators akin to the C language. These are of three types:

1. Unary: the unary operator is associated with a single operand. The operator precedes the

operand – for example, ~a.

2. Binary: the binary operator is associated with two operands. The operator appears between

the two operands – for example, a&b.

3. Ternary: the ternary operator is associated with three operands. The two operators together

constitute a ternary operation. The two operators separate the three operands – for example

a?b:c // Here the operators “?” and “:” together define an operation.

2.15 SYSTEM TASKS

During the simulation of any design, a number of activities are to be carried out to
monitor and control simulation. A number of such tasks are provided / available in
Verilog. Some other tasks serve other functions. However, a few of these are used
commonly; these are described here. The “$” symbol identifies a system task. A task
has the format
$<keyword>

2.15.1 $display

When the system encounters this task, the specified items are displayed in the
formats specified and the system advances to a new line. The structure, format, and
rules for these are the same as for the “printf” / “scanf” function in C. Refer to a
standard text in “C” language for the text formatting codes in common usage
[Gottfried].

Geethanjali College of Engg.&Tech. Department of ECE IV B.Tech II-
Sem

DIGITAL DESIGN THROUGH VERILOG HDL Page 63

Examples

$display (“The value ofais : a = , %d”,a);

Execution of this line results in printing the value of a as a decimal number

(specified by “%d”). The string present within the inverted commas specifies this.

Thus if a has the value 3.5, we get the display
The value of a is : a = 3.5.
After printing the above line, the system advances to the next line.

$display; /* This is a display task without any arguments. It advancesoutput to a new

line. */

2.15.2 $monitor

The $monitor task monitors the variables specified whenever any one of those

specified changes. During the running of the program the monitor task is invoked
and the concerned quantities displayed whenever any one of these changes.
Following this, the system advances to the next line. A monitor statement need
appear only once in a simulation program. All the quantities specified in it are
continuously monitored. In contrast, the $display command displays the

quantities concerned only once – that is, when the specific line is encountered during
execution. The format for the $monitor task is identical to that of the

$display task.

Geethanjali College of Engg.&Tech. Department of ECE IV B.Tech II-
Sem

DIGITAL DESIGN THROUGH VERILOG HDL Page 64

Examples

$monitor (“The value ofais :a= , %d”,a);

With the task, whenever the value of a changes during execution of a program, its

new value is printed according to the format specified. Thus if the value of a

changes to 2.4 at any time during execution of the program, we get the following
display on the monitor.
The value of a is: a = 2.4.

2.15.3 Tasks for Control of Simulation

Two system tasks are available for control of simulation:
$finish task, when encountered, exits simulation. Control is reverted to the

Operating System. Normally the simulation time and location are also printed out
by default as part of the exit operation.
$stop task, suspends simulation; if necessary the simulation can be resumed by

user intervention. Thus with the stop task, the simulator is in an interactive mode.
In contrast with $finish, simulation has to be started afresh.

2.16 EXERCISES

1. Run the Verilog program in Figure 3.3. Observe the output.

module fancy2; integer i,j; initial repeat(5) begin

#1 j=0; while(j<=10) begin

j=j+1;

for(i=0;i<=j;i=i+1) $write(“ b”); $display(“*”);

end

#1 while(j>=0)
begin
for(i=0;i<=j;i=i+1) $write(“ c”); $display(“*”);

j=j-1;

end

end
initial #12 $stop; endmodule

Figure A simple Verilog module.

Geethanjali College of Engg.&Tech. Department of ECE IV B.Tech II-
Sem

DIGITAL DESIGN THROUGH VERILOG HDL Page 65

2. In Exercise 3.1 above, delete b and c in the write statement lines. Rerun the program.

3. Try other combinations of I and j values and repeat the run.

4. Run the Verilog program in Figure 3.4.

5. In the program of Figure 3.4 replace the “always” statement by “initial” statement

and run the program.

6. In the program of Figure 3.4 replace the “a=a+7” statement by “a=a-7” statement and run

the program.

module fancy3; reg[11:0]a; always
begin

#0 $display(“See this: ah=%d, ad=%h, ao=%o, ab=%b”,a,a,a,a);
#1 $display(“How about this? ah=%0d, ad=%0h, ao=%0o, ab=%0b”,a,a,a,a); a=a+7;

end initial begin
a=0;

#10 $stop;

end endmodule
Figure Another simple Verilog module.

Geethanjali College of Engg.&Tech. Department of ECE IV B.Tech II-
Sem

DIGITAL DESIGN THROUGH VERILOG HDL Page 66

3

GATE LEVEL MODELING

 INTRODUCTION

Digital designers are normally familiar with all the common logic gates, their symbols,
and their working. Flip-flops are built from the logic gates. All other functionally
complex and more involved circuits can also be built using the basic gates. All the
basic gates are available as “Primitives” in Verilog. Primitives are generalized modules
that already exist in Verilog [IEEE]. They can be instantiated directly in other
modules. Further design description using gate primitives is quite close to the actual
circuits (design description using the switch primitives dealt with in Chapter 10 are
still closer). We describe features of gate level primitives, ways of working with them,
and ways of building more involved circuits with them [Palnitkar, Lee]. In this
process some of the commonly used features of Verilog are also brought out.

3.1 AND GATE PRIMITIVE

The AND gate primitive in Verilog is instantiated with the following statement: and

g1 (O, I1, I2, . . ., In);
Here ‘and’ is the keyword signifying an AND gate. g1 is the name assigned to the

specific instantiation. O is the gate output; I1, I2, etc., are the gate inputs. The
following are noteworthy:

The AND module has only one output. The first port in the argument list is
the output port.

An AND gate instantiation can take any number of inputs — the upper limit is
compiler-specific.

A name need not be necessarily assigned to the AND gate instantiation; this is true of all the

gate primitives available in Verilog.

3.1.1 Example 3.1

Figure 4.1 shows the stimulus program for testing the AND gate g1. The output
obtained by stimulating the program is shown in Figure 4.2. Some explanation
regarding the simulation program is in order here.

The module test_and has no port. It instantiates the AND module once.
The test input sequence is specified within the initial block – the sequence of statements

between the begin and end statements together form

Geethanjali College of Engg.&Tech. Department of ECE IV B.Tech II-
Sem

DIGITAL DESIGN THROUGH VERILOG HDL Page 67

this block.

The keyword “initial” signifies the settings done initially — that is, only

once for the whole routine.

The first set of statements within the initial block

a1 = 0;

a2 = 0;make

a1 = a2 = 0

at zero simulation time.

After 3 time steps, a1 is set to one but a2 remains at 0. The expression “#3” means “after 3

time steps”. Subsequent changes in a1 and a2 also can be explained in the same manner.

module test_and; reg a1, a2; wire b;

Initial

Begin

a1 = 0;

a2 = 0; #3 a1 = 1; #1 a1 = 0; #2 a2 = 1; #4 a1 = 1; #3 a2 = 0; #1 a2 = 1; end

and g1(b, a1, a2);

initial $monitor ($time, “a1 = %b, a2 = %b, b = %b”’ a1, a2, b);

initial #100 $finish;

endmodule

Figure 3.1 A module to instantiate the AND gate primitive and test it.

0 a1 = 0 a2 = 0 b = 0

3 a1 = 1 a2 = 0 b = 0

4 a1 = 0 a2 = 0 b = 0

6 a1 = 0 a2 = 1 b = 0

 10 a1 = 1 a2 = 1 b = 1

 13 a1 = 1 a2 = 0 b = 0

 14 a1 = 1 a2 = 1 b = 1

Figure 3.2 The output obtained by running the module of Figure 4.1.

Geethanjali College of Engg.&Tech. Department of ECE IV B.Tech II-
Sem

DIGITAL DESIGN THROUGH VERILOG HDL Page 68

The program displays the variable values – that is, the values of o, a1, and a2 whenever any

one of these changes. This is evident from the printout on the

monitor, which has been reproduced in Figure 4.2.

A pair of variables a1 and a2 are declared in the program, and the values
stored in them are given as inputs to the AND gate instantiation.

Any variable not declared in the module is by default taken as a net of wire
type; it is also taken as a scalar. The same is true of all modules in Verilog.

The term $time in the $monitor statement signifies the running time of the program. Here

it causes the value of time at the instant of capturing the

data for display, to be displayed. The statement

#100$finish;

signifies that the program will stop simulation and exit the operating system at the end of 100

time steps.

Truth Table of AND Gate Primitive

The truth table for a two-input AND gate is shown in Table 4.1. It can be directly
extended to AND gate instantiations with multiple inputs. The following
observations are in order here:

Table 3.1 Truth table of AND gate primitive

 Input 1

 0 1 x z

2
 0 0 0 0 0

1 0 1

x x

In
p

u
t

 x 0 x x x

z 0 x

x x

If any one of the inputs to the AND gate instantiation is in the 0 state, its output is
also in the 0 state. It is irrespective of whether the other inputs are at

the 0, 1, x or z state.

The output is at 1 state if and only if every one of the inputs is at 1 state. For all other cases

the output is at the x state.

Note that the output is never at the z state – the high impedance state. This is true of all other

gate primitives as well.

Geethanjali College of Engg.&Tech. Department of ECE IV B.Tech II-
Sem

DIGITAL DESIGN THROUGH VERILOG HDL Page 69

3.2 MODULE STRUCTURE

Figure 4.1 shows a typical module. In a general case a module can be more elaborate.
A lot of flexibility is available in the definition of the body of the module. However, a
few rules need to be followed:

The first statement of a module starts with the keyword module; it may be

followed by the name of the module and the port list if any (see Section 2.8). All the variables

in the ports-list are to be identified as inputs, outputs, or inouts. The corresponding

declarations have the form shown below:

Input a1, a2; Output b1, b2; Inout c1, c2;

The port-type declarations here follow the module declaration mentioned
above.

The ports and the other variables used within the body of the module are to be identified as

nets or registers with specific types in each case. The respective declaration statements follow the

port-type declaration statements.

Examples:

wire a1, a2, c; reg b1, b2;

The type declaration must necessarily precede the first use of any variable or signal in the

module.

The executable body of the module follows the declaration indicated above. The last

statement in any module definition is the keyword “endmodule”. Comments can appear

anywhere in the module definition.

Geethanjali College of Engg.&Tech. Department of ECE IV B.Tech II-
Sem

DIGITAL DESIGN THROUGH VERILOG HDL Page 70

3.3 OTHER GATE PRIMITIVES

All other basic gates are also available as primitives in Verilog. Details of
the facilities and instantiations in each case are given in Table 4.2. The
following points are noteworthy here:

In all cases of instantiations, one need not necessarily assign a name to the

instantiation. It need be done only when felt necessary – say for clarity of

circuit description.

In all the cases the output port(s) is (are) declared first and the input port(s)
is

(are) declared subsequently.

The buffer and the inverter have only one input each. They can have any number of

outputs; the upper limit is compiler-specific. All other gates have one output each but

can have any number of inputs; the upper limit is again compiler-specific.

3.3.1 Truth Table

Extending the concepts of Section 4.2.2, one can form the truth tables of
all other gate primitives. The basic features of each are given in Table 4.3.
The truth tables themselves are given in Appendix B.

3.4 ILLUSTRATIVE EXAMPLES

The examples considered here illustrate the use of gate primitives in
designs. Further, they bring out how one can build fairly large designs by
judiciously combining smaller modules in a repeated fashion [Bignel,
Sedra].

Table 3.2 Basic gate primitives in Verilog with details

Gate Mode of instantiation Output port(s) Input port(s)

AND and ga (o, i1, i2, . . . i8); o i1, i2, . .
OR or gr (o, i1, i2, . . . i8); o i1, i2, . .
NAND nand gna (o, i1, i2, . . . i8); o i1, i2, . .
NOR norgnr (o, i1, i2, . . . i8); o i1, i2, . .
XOR xor gxr (o, i1, i2, . . . i8); o i1, i2, . .
XNOR xnor gxn (o, i1, i2, . . . i8); o i1, i2, . .
BUF buf gb (o1, o2, …. i); o1, o2, o3, . . i
NOT not gn (o1, o2, o3, . . . i); o1, o2, o3, . . i

Geethanjali College of Engg.&Tech. Department of ECE IV B.Tech II-
Sem

DIGITAL DESIGN THROUGH VERILOG HDL Page 71

Table 3.3 Rules for deciding the output values of gate primitives for different input
combinations

 Type of gate 0 output state 1 output state x output state

AND Any one of the All the inputs are at one

inputs is zero

NAND All the inputs are at Any one of the inputs is

one

zero

 All other cases

OR

All the inputs are at

Any one of the inputs is

 zero one

NOR Any one of the All the inputs are at

inputs is one

zero

 XOR If every one of the inputs is definite at zero or If any one of the inputs is

one, the output is zero or one as decided by

at x or z state, the output is

 XNOR the XOR or XNOR function at x state

BUF If the only input is at If the only input is at 1

0 state

state

 All other cases of inputs

NOT

If the only input is at

If the only input is at 0

 1 state state

3.4.1 Example 3.2

The commonly used A-O-I gate is shown in Figure 4.3 for a simple case. The module and
the test bench for the same are given in Figure 4.4. The circuit has been realized here by
instantiating the AND and NOR gate primitives. The names of signals and gates used in the
instantiations in the module of Figure 4.4 remain the same as those in the circuit of Figure

4.3. The module aoi_gate in the figure has input and output ports since it describes a

circuit with signal inputs and an output. The module aoi_st is a stimulus module. It

generates inputs to the aoi_gate module and gets its output. It has no input or output
ports.

a1

g1

a2

o1

g3 o

o2

b1

g2

b2

Figure 3.3 A typical A-O-I gate circuit.

Geethanjali College of Engg.&Tech. Department of ECE IV B.Tech II-
Sem

DIGITAL DESIGN THROUGH VERILOG HDL Page 72

/*module for the aoi-gate of figure 4.3 instantiating the gate primitives - fig4.4*/
module aoi_gate(o,a1,a2,b1,b2);
input a1,a2,b1,b2;// a1,a2,b1,b2 form the input //ports of the module
output o;//o is the single output port of the module wire o1,o2;//o1 and o2 are
intermediate signals //within the module
and g1(o1,a1,a2); //The AND gate primitive has two and g2(o2,b1,b2);//
instantiations with assigned //names g1 & g2.
nor g3(o,o1,o2);//The nor gate has one instantiation //with assigned name g3.
endmodule
//Test-bench for the aoi_gate above module aoi_st;
reg a1,a2,b1,b2;
//specific values will be assigned to a1,a2,b1, // and b2 and these connected
//to input ports of the gate insatntiations; //hence these variables are declared as reg
wire o;
initial begin

a1 = 0;

a2 = 0;

b1 = 0;

b2 = 0; #3 a1 = 1; #3 a2 = 1; #3 b1 = 1; #3 b2 = 0; #3 a1 = 1; #3 a2 = 0; #3 b1 = 0;

end
initial #100 $stop;//the simulation ends after //running for 100 tu’s.
initial $monitor($time , “ o = %b , a1 = %b , a2 = %b , b1 = %b ,b2 = %b
“,o,a1,a2,b1,b2); aoi_gate gg(o,a1,a2,b1,b2);
endmodule

Figure 3.4 Module for the AOI gate of Figure 4.3 and a test bench for the same.

The A-O-I gate module has three instantiations – two of these being AND gates and the third a

NOR gate; this conforms to the circuit of A_O_I gate in Figure 4.3. Within the aoi_gate module, all

signals are of type net. The aoi_ gate module in Figure 4.4 is instantiated once in the module

aoi_st for testing. Any such instantiation of a user-defined module in another module has to be

assigned a name. (As mentioned earlier, this is not mandatory with the instantiation of gate

primitives available in Verilog.) The instantiation is given the name gg here. Note that all the

inputs to the instantiation of aoi_gate in the test bench are fed through regs.

The aoi_gate and aoi_st are compiled and run. Different combinations of values are assigned to

a1, a2, b1, and b2 in the test bench at regular intervals of 3 time steps. At all such time steps at least

one of the signals included in the monitor statement changes. Hence all the signal values are displayed

on the monitor at three time step intervals. The results of running the test bench are reproduced in

Figure 4.5, which confirms this.

Geethanjali College of Engg.&Tech. Department of ECE IV B.Tech II-
Sem

DIGITAL DESIGN THROUGH VERILOG HDL Page 73

The module aoi_gate has been synthesized and the synthesized circuit shown in Figure 4.6; the

figure does not warrant any detailed explanation.

Both the modules can do with some elegant simplification. First consider the stimulus module

aoi_st in Figure 4.4. All the four inputs can be clubbed together and treated as a “vector” input. Often

this may be possible to be identified with a four-bit-wide bus in a system. It makes the vector

representation all the more meaningful. With this, the variables together can be declared as a single

vector. The value taken by the vector can be defined with relevant time delays. To accommodate such

a change, the AOI module of Figure 4.4 is recast in Figure 4.7. The compactness achieved here is

carried over to the instantiation of the module for its test bench aoi_st2, which is also shown in the

figure.

The AOI gate itself (aoigate2 in Figure 4.7) has been made compact on two counts: All the four

inputs have been clubbed together and treated as a four-bit vector. Further, the two and gate

instantiations are clubbed together into one statement. Note the format of the statement – a comma

separates the two instantiations, and as usual a semicolon signifies the end of the statement. In any

set of instantiations, all similar instantiations in a module can be combined in this manner. The

module aoigate2 has an input/output port since it describes a circuit with signal inputs and outputs.

aoi_st2 is a stimulus module. It generates inputs

0 o = 1 , a1 = 0 , a2 = 0 , b1 = 0 ,b2 = 0
3 o = 1 , a1 = 1 , a2 = 0 , b1 = 0 ,b2 = 0
6 o = 0 , a1 = 1 , a2 = 1 , b1 = 0 ,b2 = 0
9 o = 0 , a1 = 1 , a2 = 1 , b1 = 1 ,b2 = 0
18 o = 1 , a1 = 1 , a2 = 0 , b1 = 1 ,b2 = 0
21 o = 1 , a1 = 1 , a2 = 0 , b1 = 0 ,b2 = 0

Figure 3.5 Results of running theaoi_sttest bench of Figure 3.3.

to the module from within the stimulus module and gets its output. It has no input or
output port. In a more general case one may have a number of modules defined at
different levels, which are repeatedly instantiated in bigger modules. The stimulus
module may be at the apex. It may carry out the stimulus activity by generating the
inputs to the other ports in the hierarchy and receiving their outputs.

module aoi_gate2(o,a);
input [3:0]a;//A is a vector of 4 bits width output o;// output o is a scalar
wire o1,o2;//these are intermediate signals and (o1,a[0],a[1]),(o2,a[2],a[3]);
nor (o,o1,o2);/*The nor gate has one instantiation with assigned name g3.*/
endmodule
module aoi_st2; reg[3:0] aa; aoi_gate2 gg(o,aa); initial

begin

aa = 4’b000;//a being a vector, all its #3 aa = 4’b0001;//bit components are

Geethanjali College of Engg.&Tech. Department of ECE IV B.Tech II-
Sem

DIGITAL DESIGN THROUGH VERILOG HDL Page 74

#3 aa = 4’b0010;//assigned values at one go. #3 aa = 4’b0100;//Similarly their changes are #3

aa = 4’b1000;//combined in the assignments #3 aa = 4’b1100;

#3 aa = 4’b0110; #3 aa = 4’b0011;

end initial

$monitor($time , “ aa = %b , o = %b “ , aa,o); initial #24 $stop;
endmodule
Figure 3.7 Another realization of the A-I-O gate with the input declared as a vector;
the testbench for the module is also shown in the figure.

Geethanjali College of Engg.&Tech. Department of ECE IV
B.Tech II-Sem

DIGITAL DESIGN THROUGH VERILOG HDL Page 75

The stimulus module need not necessarily have a port; aoi_st in Figure 4.4 and aoi_st2

in Figure 4.7 are typical examples. The results of running the test bench aoi_st2 of
Figure 4.7 are shown in Figure 4.8.

To facilitate involved design descriptions, some additional flexibility is available in

Verilog.

Signals at the ports can be identified by a hierarchical name. Such addressing
may become useful when displaying them in the stimulus module.

Signal instantiations illustrated above specify inputs and outputs in the same

sequence as was done in the definition. The procedure is simple and acceptable in

situations with only a few numbers of inputs and outputs. But in modules with a

comparatively large number of inputs and outputs, sticking to the sequence and keeping

track of it becomes strenuous. In such situations the instantiation can be done by

identifying the inputs and outputs on a one-to-one basis [see Section 2.8]. Thus the

instantiation of the aoi_gate2 in the test bench of Figure 4.7 can be described

alternately as

aoigate2 gg (.o(o), .a[1](aa[1]), .a[2](aa[2]), .a[3](aa[3]), .a[4](aa[4]));

Here one need not stick to the same order of assignment of the ports as in
the module definition. Thus the instantiation entered as

aoigate2 gg (.a[1](aa[1]), .o(o),.a[2](aa[2]), .a[4](aa[4]), a[3](aa[3]));

is equally valid.

3.4.2 Example 4.3: 4-to-16 Decoder

Decoder design using gates can be described in various ways. Here we
define a 2-to-4 decoder module and instantiate it repeatedly and judiciously
to realize a 4-to-16 decoder. The procedure is not necessarily the best or
most elegant.

0 aa = 0000 , o = 1
3 aa = 0001 , o = 1
6 aa = 0010 , o = 1
9 aa = 0100 , o = 1
12 aa = 1000 , o = 1
15 aa = 1100 , o = 0
18 aa = 0110 , o = 1
21 aa = 0011 , o = 0

Figure 3.8 Results of running theaoi_st2test bench of Figure 4.7.

Geethanjali College of Engg.&Tech. Department of ECE IV
B.Tech II-Sem

DIGITAL DESIGN THROUGH VERILOG HDL Page 76

Figure 3.9© shows the formation of the 4-to-16 decoder in terms of two

numbers of 3-to-8 decoders. The 3-to-8 decoders have an “Enable” input each

(designated ‘en’ – one being of the active high and the other of the active low

type); these are connected to the most significant bit of the 4-bit input to form

the 4-to-16 decoder. The 3-to-8 decoder can again be formed in terms of two 2-

to-4 decoders in the same manner as shown in Figure 4.9(b). The 2-to-4 decoder

block used here is shown in Figure 4.9(a). The logic of building a complex circuit

unit in terms of repeated use of smaller and smaller circuit units followed here is

used in the design description as well. Figure 4.10 shows the design description of

a 2-to-4 decoder module and a test bench for the same. The decoder module

(dec2_4) accepts a 2-bit-wide vector input b and decodes it into a 4-bit-wide

vector output a. It has an additional “Enable” input designated “en”; the outputs

are enabledonly if en = 1. The input en has been introduced to facilitate

expansion of the decoder capacity by repeated instantiation as explained above.

The test bench for the decoder is more illustrative than exhaustive; that is, it does

not test the module for all possible input values. Results of the simulation run are

shown in Figure 4.11.

q

b

En

b

d
ec

o
d
e

r

a

2 - t o - 4

b

d
ec

o
d
er

a

2 - t o - 4

d
ec

o
d

er

2
-t

o
-4

a (a

)

p

3
-t

o
-8

d

ec
o
d

er

3
-t

o
-8

d

ec
o

d
er

En

4-to-16 decoder

3-to-8 decoder

 (b) ©

Figure 3.9 Formation of 4-to-16 decoder circuit in terms
of smaller decoders: (a) 2-to-4decoder, (b) 3-to- 8 decoder
in terms of two 2-to-4 decoders, and (c) 4-to-16 decoder
in terms of two 3-to-8 decoders.

Geethanjali College of Engg.&Tech. Department of ECE
IV B.Tech II-Sem

DIGITAL DESIGN THROUGH VERILOG HDL Page 77

module dec2_4 (a,b,en); output [3:0] a;

input [1:0]b; input en; wire [1:0]bb;

not(bb[1],b[1]),(bb[0],b[0]);

and(a[0],en, bb[1],bb[0]),(a[1],en, bb[1],b[0]), (a[2],en,

b[1],bb[0]),(a[3],en, b[1],b[0]); endmodule

//test bench

module tst_dec2_4(); wire [3:0]a; reg[1:0] b; reg en; dec2_4

dec(a,b,en); initial

begin

{b,en} =3’b000; #2{b,en} =3’b001; #2{b,en} =3’b011; #2{b,en}

=3’b101; #2{b,en} =3’b111; end

initial

$monitor ($time , “output a = %b, input b = %b “, a, b);

endmodule

Figure 3.10 Design description of a 2-to-4 decoder circuit and its test

bench.

Figure 4.12 shows a 3-to-8 decoder module formed by repeated

instantiation of the 2-to-4 decoder of Figure 4.10. The eight AND gate

instantiations ensure that the outputs are enabled only when enn — a

separate “Enable” signal — goes active. Following the same logic, the

module for the 4-to-16 decoder is described in Figure 4.13. A test bench

to test the module through all the possible input states is also included in

the figure. Figure 4.14 shows the results of running the test-bench.

//output
//# 0 output a = 0000, input b = 00
//# 2 output a = 0001, input b = 00
//# 4 output a = 0010, input b = 01
//# 6 output a = 0100, input b = 10
//# 8 output a = 1000, input b = 11

Figure 3.11 Results of running the test bench of Figure 4.10.

Geethanjali College of Engg.&Tech. Department of ECE IV B.Tech II-
Sem

DIGITAL DESIGN THROUGH VERILOG HDL Page 78

module dec3_8(pp,q,enn); output[7:0]pp; input[2:0]q;
input enn; wire qq; wire[7:0]p; not(qq,q[2]);
dec2_4 g1(.a(p[3:0]),.b(q[1:0]),.en(qq)); dec2_4 g2(.a(p[7:4]),.b(q[1:0]),.en(q[2])); and
g30(pp[0],p[0],enn);
and g31(pp[1],p[1],enn); and g32(pp[2],p[2],enn); and g33(pp[3],p[3],enn); and
g34(pp[4],p[4],enn); and g35(pp[5],p[5],enn); and g36(pp[6],p[6],enn); and
g37(pp[7],p[7],enn); endmodule
Figure 3.12 A 3-to-8 decoder module formed by repeated instantiation of the 2-to-
4decoder module in Figure 4.10.

module dec4_16(m,n); output[15:0]m; input[3:0]n;
wire nn; //wire en; not(nn,n[3]);
dec3_8 g3(.pp(m[7:0]),.q(n[2:0]),.enn(nn)); dec3_8
g4(.pp(m[15:8]),.q(n[2:0]),.enn(n[3])); endmodule
//test-bench
module dec4_16_stimulus; wire[15:0]m;
//wire l,m,n; reg[3:0]n; dec4_16 gg(m,n); initial
begin n=4’b0000;#2n=4’b0000;#2n=4’b0001;
#2n=4’b0010;#2n=4’b0011;#2n=4’b0100;

#2n=4’b1000;#2n=4’b1001;#2n=4’b1010;

#2n=#2n=4’b0101;#2n=4’b0110;#2n=4’b0111;

4’b1011;#2n=4’b1100;#2n=4’b1101;
#2n=4’b1110;#2n=4’b1111;#2n=4’b1111; end
initial $monitor($time,” m = %b ,n = %b , gg.g3.qq = %b , gg.g4.g1.bb = %b “ ,
m,n,gg.g3.qq,gg.g4.g1.bb); //gg.g3.qq displays the enable line of dec3_8 called g3-g1
//gg.g4.g1.bb displays the bb wire in dec2_4 initial #40 $stop ;
endmodule

Figure 3.13 A 4-to-16 decoder module formed by repeated instantiation of the 3-to-8decoder

module of Figure 4.12. A test bench for the same is also shown.

//output
//# 0 m = 0000000000000001 ,n = 0000 ,
gg.g3.qq = 1 , gg.g4.g1.bb = 11
//# 4 m = 0000000000000010 ,n = 0001 ,
gg.g3.qq = 1 , gg.g4.g1.bb = 10
//# 6 m = 0000000000000100 ,n = 0010 ,
gg.g3.qq = 1 , gg.g4.g1.bb = 01
//# 8 m = 0000000000001000 ,n = 0011 ,
gg.g3.qq = 1 , gg.g4.g1.bb = 00
//# 10 m = 0000000000010000 ,n = 0100 ,
gg.g3.qq = 0 , gg.g4.g1.bb = 11
//# 12 m = 0000000000100000 ,n = 0101 ,

Geethanjali College of Engg.&Tech. Department of ECE IV B.Tech II-
Sem

DIGITAL DESIGN THROUGH VERILOG HDL Page 79

gg.g3.qq = 0 , gg.g4.g1.bb = 10
//# 14 m = 0000000001000000 ,n = 0110 ,
gg.g3.qq = 0 , gg.g4.g1.bb = 01
//# 16 m = 0000000010000000 ,n = 0111 ,
gg.g3.qq = 0 , gg.g4.g1.bb = 00
//# 18 m = 0000000100000000 ,n = 1000 ,
gg.g3.qq = 1 , gg.g4.g1.bb = 11
//# 20 m = 0000001000000000 ,n = 1001 ,
gg.g3.qq = 1 , gg.g4.g1.bb = 10
//# 22 m = 0000010000000000 ,n = 1010 ,

gg.g3.qq = 1 , gg.g4.g1.bb = 01
//# 24 m = 0000100000000000 ,n = 1011 ,

gg.g3.qq = 1 , gg.g4.g1.bb = 00

//# 26 m = 0001000000000000 ,n = 1100 ,

gg.g3.qq = 0 , gg.g4.g1.bb = 11

//# 28 m = 0010000000000000 ,n = 1101 ,

gg.g3.qq = 0 , gg.g4.g1.bb = 10

//# 30 m = 0100000000000000 ,n = 1110 ,

gg.g3.qq = 0 , gg.g4.g1.bb = 01

//# 32 m = 1000000000000000 ,n = 1111 ,

gg.g3.qq = 0 , gg.g4.g1.bb = 00

Figure 3.14 Results of running the test bench of Figure 4.13 for the 4-to-16 decoder

Observations:–
The nested tree of modules with the inputs and outputs in each case are shown in Figure 3.15.

dec4_16_stimulus

p q

 m n

 dec4_16

 gg

m[7:0]

m[15:8]

 nn n[4]

 n[3:0]

 p En q q En p
 dec3_8 g3 dec3_8 g4

 p[3:0] p[7:4] p[3:0] p[7:4]
 qq q[3] qq q[3]

 q [1: 0] q [1: 0]

a En b b En a a En b b En a
 dec2_4 g1 dec2_4 g2 dec2_4 g1 dec2_4 g2

Geethanjali College of Engg.&Tech. Department of ECE IV B.Tech II-
Sem

DIGITAL DESIGN THROUGH VERILOG HDL Page 80

Figure 3.15 Block diagram representation of the module instantiations and signalassignments

for the stimulus module of Figure 4.10.

Two signals within the two nested modules are monitored in dec4_16_stimulus. Formation of

their hierarchical addresses is also shown in

Figure 3.15. (Hierarchical addressing is addressed in detail in Chapter 11.)

The module dec3_8 is instantiated twice in the module dec4_16. Here the port declarations are

done by declaring the port names on a one-to one basis. The order has not been maintained as in

the defining module.

4.5.2.1 Decoder Synthesis

The synthesized circuit of the 2-to-4 decoder module of Figure 4.10 (dec2_4) is shown
in Figure 4.16. The AND gate cells available in the library are all of the two-input type;
hence six such cells (designated as ix5, ix7, ix11, ix13, ix15, and ix19) are utilized to
realize the four numbers of three-input AND gates instantiated in the design module.
The NOT gates are realized through two NOT gate cells in the library (designated as
ix1 and ix3). The wider lines in the figure signify bus-type interconnections. The
synthesized circuit of the 3-to-8 decoder module of Figure 4.12 (dec3_8) is shown in

Figure 4.17. The two instantiations of the dec2_4 module (g1 and g2) are shown as
black boxes. Similarly, Figure 4.18 shows the synthesized circuit of the 4-to-16 decoder

module of Figure 4.13 (dec4_16). The two instantiations of the dec3_8 module (g3

and g4) appear as black boxes inside. Figure 4.19 shows the complete hierarchy of

instantiations in the synthesized circuit. In the figure boxes g3 and g4 represent
instantiations of the 3-to-8 decoders used in the module. Each of these has two

numbers of the 2-to-4 decoders – designated as g1 and g2; these are shown enclosed
inside boxes.

Figure 3. 16 The synthesized circuit of the 2-to-4 decoder of Figure 4.10.

Geethanjali College of Engg.&Tech. Department of ECE IV B.Tech II-Sem

DIGITAL DESIGN THROUGH VERILOG HDL Page 81

Figure 3.17 The synthesized circuit of the 3-to- 8 decoder of Figure 4.12.

Figure 3.18 The synthesized circuit of the 4-to-16 decoder of Figure 4.13.

Geethanjali College of Engg.&Tech. Department of ECE IV B.Tech II-
Sem

DIGITAL DESIGN THROUGH VERILOG HDL Page 82

Figure 3.19 Four-to-sixteen decoder – hierarchy of instantiations.

3.6 TRI-STATE GATES

Four types of tri-state buffers are available in Verilog as primitives. Their outputs can
be turned ON or OFF by a control signal. The direct buffer is instantiated as

Bufif1 nn (out, in, control);

The symbol of the buffer is shown in Figure 4.20. We have
out as the single output variable in as the single input variable and

control as the single control signal variable.

When control = 1, out = in.

in out

control

Figure 3.20 A tri-state buffer.

Geethanjali College of Engg.&Tech. Department of ECE IV B.Tech II-
Sem

DIGITAL DESIGN THROUGH VERILOG HDL Page 83

When control = 0,

out is cut off from the input and tri-stated. The output, input and control signalsshould
appear in the instantiation in the same order as above. Details of bufif1 as well as the
other tri-state type primitives are shown in Table 4.4. In all the cases shown in Table

4.4, out is the output, in is the input, and control, the control variable.

Table 3.4 Instantiation and functional details of tri-state buffer primitives

 Typical instantiation Functional representation Functional description

 in out

bufif1 (out,in,

Out = in if control = 1; else

 control); out = z

 control

 in out

bufif0 (out,in,

Out = in if control = 0; else

 control); out = z

 control

 in out

notif1 (out,in,

Out = complement of in

 control); if control = 1; else out = z

 control

 in out

notif0 (out,in,

Out = complement of in

 control); if control = 0; else out = z

 control

The truth tables of the tri-state buffers are given in Appendix B. The following
observations are common to all the tri-state buffer primitives:

If the control signal has a value that corresponds to the buffer being on, two
possibilities exist:

The output has the same value as the input if the input is 0 or 1. The output is at x otherwise

(i.e., if the input is x or z).

If the control signal has a value that corresponds to the control signal being
off, the output is at z state irrespective of the value of the input. If the control signal is at x or z,

three possibilities arise:

If the input is at x or z, the output is at x.

If the input is at 0 state, the output is L for bufif1 and bufif0. It is at

H for notif1 and notif0.

Geethanjali College of Engg.&Tech. Department of ECE IV B.Tech II-
Sem

DIGITAL DESIGN THROUGH VERILOG HDL Page 84

If the input is at 1 state, the output is H for bufif1 and bufif0. It is at L for notif1 and notif0.

Note that H corresponds to 1 or z state while L corresponds to 0 or z state.

3.7 ARRAY OF INSTANCES OF PRIMITIVES

The primitives available in Verilog can also be instantiated as arrays. A judicious use of
such array instantiations often leads to compact design descriptions. A typical array
instantiation has the form

and gate [7 : 4] (a, b, c);

where a, b, and c are to be 4 bit vectors. The above instantiation is equivalent to
combining the following 4 instantiations:
and gate [7] (a[3], b[3], c[3]), gate [6] (a[2], b[2], c[2]), gate [5] (a[1], b[1],c[1]), gate [4]

(a[0], b[0], c[0]);
The assignment of different bits of input vectors to respective gates is implicit in the
basic declaration itself. A more general instantiation of array type has the form

and gate[mm : nn](a, b, c);

where mm and nn can be expressions involving previously defined parameters, integers
and algebra with them. The range for the gate is 1+ (mm-nn); mm and nn do not have
restrictions of sign; either can be larger than the other.

3.7.1 Example 4.4 A Byte Comparator

A circuit to compare two variables each of one byte is given in Figure 3.21. The circuit

outputs a flag d; d is 1 if the two bytes are equal; else it is 0. The output is activated

only if the enable signal en = 1. If en = 0, the circuit output is tri-stated. The module
description is given in Figure 3.22 along with a test-bench. The simulated output is in
Figure 3.23.

Observations:
In all array-type instantiations, the array sizes are to be matched.

The order of assignments to outputs, inputs, etc., in the individual gates will be decided by the

order of the bits. Thus the array instantiation

or gg[3:1] (a[3:1], b[4:2], c);

is equivalent to the combination of instantiations
or gg[3] (a[3], b[4], c[2]), gg[2] (a[2], b[3], c[1]), gg[1] (a[1], b[2], c[0]);

If the vector sizes in the port list do not match the array size specified, assignments will
be done starting from the right; that is, the rightmost instantiation will be assigned the
rightmost inputs and outputs and the following instantiations will be made assignments
in the order specified. However, it is desirable to avoid such ill-matched instantiations.

Geethanjali College of Engg.&Tech. Department of ECE IV B.Tech II-
Sem

DIGITAL DESIGN THROUGH VERILOG HDL Page 85

a[7]

g1[7]

b[7]

a[6]

g1[6]

b[6]

dd d

en

a[0]

g1[0]

b[0]

Figure 3.21 A byte comparator.

Geethanjali College of Engg.&Tech. Department of ECE IV B.Tech II-
Sem

DIGITAL DESIGN THROUGH VERILOG HDL Page 86

0 en = 0, a = 00000000, b = 00000000, d = z

2 en = 1, a = 00000001, b = 00000000, d = 0

4 en = 1, a = 00000001, b = 00000010, d = 0

6 en = 1, a = 00000010, b = 00000010, d = 1

8 en = 1, a = 00000010, b = 00000100, d = 1 #10 en = 1, a =

00000011, b = 00000100, d = 0 #12 en = 1, a = 00000011, b =

00000110, d = 0 #14 en = 1, a = 00000100, b = 00000110, d = 1

#16 en = 1, a = 00000100, b = 00001000, d = 1 #18 en = 1, a =

00000101, b = 00001000, d = 0 #20 en = 1, a = 00000101, b =

00001010, d = 0 #22 en = 1, a = 00000110, b = 00001010, d = 1

#24 en = 1, a = 00000110, b = 00001100, d = 1 #26 en = 1, a =

00000111, b = 00001100, d = 0 #28 en = 1, a = 00000111, b =

00001110, d = 0

In the general case the array size is specified in terms of two constant

expressions. These can involve constants, previously defined parameters and

algebraic operators: Such an instantiation can have a form as

and gate [offset*2+size-1: offset*2] (a, b, c);

where ‘offset’ and ‘size’ are parameters whose values should have been

assigned earlier (operators are discussed in detail in Chapter 6).

module comp(d,a,b,en); input en; input[7:0]a,b;
output d; wire [7:0]c; wire dd;
xor g1[7:0](c,b,a); or(dd,c); notif1(d,dd,en); endmodule
module comp_tb; reg[7:0]a,b; reg en;
comp gg(d,a,b,en); initial

begin

a = 8’h00; b = 8’h00; en = 1’b0; end

always
#2 en = 1’b1; always
begin
#2 a = a+1’b1; #2 b = b+2’d2; end
initial $monitor($time,” en = %b , a = %b ,b = %b ,d = %b
“,en,a,b,d);
initial #30 $stop; endmodule

Figure 3.22 Module of an 8-bit comparator and its test bench.

Geethanjali College of Engg.&Tech. Department of ECE IV B.Tech II-
Sem

DIGITAL DESIGN THROUGH VERILOG HDL Page 87

Figure 3.23 Results of the simulation run of the test bench in Figure 4.22.

3.9 ADDITIONAL EXAMPLES

A set of representative examples is discussed here with the
following aims:–

Bring out the flexibility associated with the use of primitives and their
instantiations.

Illustrate the use of different features of Verilog discussed in the
chapter.

Focus attention on the fact that any combinational circuit can be designed

at the gate level.

Details of the examples considered are summarized in Table 3.5

Table 3.5 Summary of the examples considered in Section 3.8

Circuit

 Figure numbers

Remarks

Module &

Simulation

Synthesized

 function

 Test-bench results circuit

 Half-adder 4.24 4.25 4.26

Full-adder 4.27

4.28 4.29 & Instantiates the half-adder twice as

4.30

ha1 and ha2 in Figure 4.27

 2-to-1 Mux 4.37 4.38 4.39 Realized with tri-state buffers

 4.31 4.32 4.33 Simple & direct

4-to-1 Mux 4.34

4.35
4.36 The above type with an additional

tri-state output facility

 4.40 4.41 4.42 Realized with tri-state buffers

Geethanjali College of Engg.&Tech. Department of ECE IV B.Tech II-
Sem

DIGITAL DESIGN THROUGH VERILOG HDL Page 88

module ha(s,ca,a,b); input a,b;
output s,ca; xor(s,a,b); and(ca,a,b); endmodule
//test-bench module tstha(); reg a,b;
wire s,ca;
ha hh(s,ca,a,b); initial
begin a=0;b=0; end always begin
#2 a=1;b=0; #2 a=0;b=1; #2 a=1;b=1; #2 a=0;b=0; end
initial $monitor($time , “ a = %b , b = %b ,out carry = %b , outsum =
%b “ ,a,b,ca,s);
initial #24 $stop; endmodule

Figure 3.24 Design module and a test bench for a half-adder.

output

0 a = 0 , b = 0 ,out carry = 0 , outsum = 0

2 a = 1 , b = 0 ,out carry = 0 , outsum = 1

4 a = 0 , b = 1 ,out carry = 0 , outsum = 1

6 a = 1 , b = 1 ,out carry = 1 , outsum = 0

8 a = 0 , b = 0 ,out carry = 0 , outsum = 0

10 a = 1 , b = 0 ,out carry = 0 , outsum = 1

12 a = 0 , b = 1 ,out carry = 0 , outsum = 1

14 a = 1 , b = 1 ,out carry = 1 , outsum = 0

16 a = 0 , b = 0 ,out carry = 0 , outsum = 0

18 a = 1 , b = 0 ,out carry = 0 , outsum = 1

20 a = 0 , b = 1 ,out carry = 0 , outsum = 1

22 a = 1 , b = 1 ,out carry = 1 , outsum = 0

Figure 3.25 Results of running the test bench of the half-adder module in Figure

4.24.

Geethanjali College of Engg.&Tech. Department of ECE IV
B.Tech II-Sem

DIGITAL DESIGN THROUGH VERILOG HDL Page 89

module fa(sum,cout,a,b,cin); input a,b,cin;
output sum,cout; wire s,c1,c2;
ha ha1(s,c1,a,b), ha2(sum,c2,s,cin); or(cout,c2,c1);
endmodule
//test-bench module tst_fa(); reg a,b,cin;
fa ff(sum,cout,a,b,cin); initial
begin
a =0;b=0;cin=0; end

always begin

#2 a=1;b=1;cin=0;#2 a=1;b=0;cin=1; #2 a=1;b=1;cin=1;#2 a=1;b=0;cin=0; #2

a=0;b=0;cin=0;#2 a=0;b=1;cin=0; #2 a=0;b=0;cin=1;#2 a=0;b=1;cin=1; #2

a=1;b=0;cin=0;#2 a=1;b=1;cin=0; #2 a=0;b=1;cin=0;#2 a=1;b=1;cin=1; end

initial $monitor($time ,” a = %b, b = %b, cin = %b, outsum = %b, outcar
= %b “, a,b,cin,sum,cout); initial #30 $stop ;
endmodule

Figure 3.27 Design module and a test bench for a full-adder.

Geethanjali College of Engg.&Tech. Department of ECE IV B.Tech II-
Sem

DIGITAL DESIGN THROUGH VERILOG HDL Page 90

//output

#0 a = 0, b = 0, cin = 0, outsum = 0, outcar = 0 #2 a = 1, b = 1, cin = 0,

outsum = 0, outcar = 1 #4 a = 1, b = 0, cin = 1, outsum = 0, outcar = 1 #6 a =

1, b = 1, cin = 1, outsum = 1, outcar = 1 #8 a = 1, b = 0, cin = 0, outsum = 1,

outcar = 0 #10 a = 0, b = 0, cin = 0, outsum = 0, outcar = 0 #12 a = 0, b = 1, cin

= 0, outsum = 1, outcar = 0 #14 a = 0, b = 0, cin = 1, outsum = 1, outcar = 0

#16 a = 0, b = 1, cin = 1, outsum = 0, outcar = 1 #18 a = 1, b = 0, cin = 0,

outsum = 1, outcar = 0 #20 a = 1, b = 1, cin = 0, outsum = 0, outcar = 1 #22 a

= 0, b = 1, cin = 0, outsum = 1, outcar = 0 #24 a = 1, b = 1, cin = 1, outsum = 1,

outcar = 1 #26 a = 1, b = 1, cin = 0, outsum = 0, outcar = 1 #28 a = 1, b = 0, cin

= 1, outsum = 0, outcar = 1

Figure 3.28 Results of running the test bench of the full-adder module in

Figure 4.27.

Figure 3.29 Synthesized output of the full-adder module of Figure 3.27.

Figure 3.30 Synthesized circuit hierarchy of the full-adder module in

Figure 3.27.

Geethanjali College of Engg.&Tech. Department of ECE IV B.Tech II-
Sem

DIGITAL DESIGN THROUGH VERILOG HDL Page 91

module mux4_1(y,i,s); input [3:0] i;
input [1:0] s; output y; wire [1:0] ss; wire [3:0]yy;
not (ss[0],s[0]),(ss[1],s[1]); and (yy[0],i[0],ss[0],ss[1]); and (yy[1],i[1],s[0],ss[1]);
and (yy[2],i[2],ss[0],s[1]); and (yy[3],i[3],s[0],s[1]);
or (y,yy[3],yy[2],yy[1],yy[0]); endmodule
//test-bench
module tst_mux4_1(); reg [3:0]i;
reg [1:0] s; mux4_1 mm(y,i,s); initial

begin

#2{i,s} = 6’b 0000_00; #2{i,s} = 6’b 0001_00; #2{i,s} = 6’b 0010_01; #2{i,s} = 6’b

0100_10; #2{i,s} = 6’b 1000_11; #2{i,s} = 6’b 0001_00; end

initial
$monitor($time,” input s = %b,y = %b” ,s,y); endmodule

Figure 3.31 Design module and a test bench for a 4-to-1 mux module.

//output
//# 0 input s = xx ,y = x
//# 2 input s = 00 ,y = 0
//# 4 input s = 00 ,y = 1
//# 6 input s = 01 ,y = 1
//# 8 input s = 10 ,y = 1
//# 10 input s = 11 ,y = 1
//# 12 input s = 00 ,y = 1

Figure 3.32 Results of running the test bench of the 4-to- mux module in Figure 3.31.

Geethanjali College of Engg.&Tech. Department of ECE IV B.Tech II-
Sem

DIGITAL DESIGN THROUGH VERILOG HDL Page 92

Figure 3.33 Synthesized output of the 4-to-1 Mux module of Figure 3.31.

module trimux4_1(o,e,i,s); input e;
input [1:0]s; input [3:0]i; output o; tri o;
wire y,y1,y2,y3,y4; wire [1:0]ss;
not(ss[0],s[0]),(ss[1],s[1]); and g1(y1,ss[0],ss[1],i[0]); and g2(y2,ss[1],s[0],i[1]); and
g3(y3,ss[0],s[1],i[2]); and g4(y4,s[1],s[0],i[3]); or(y,y3,y2,y1,y2);
bufif1 buf2(o,y,e); endmodule
//TESTBENCH
module tst_trimux4_1(); reg [1:0]s;
reg [3:0]i; reg e; wire o;
trimux4_1 tmx4_1(o,e,i,s); initial
begin
e =0;i =2’b00; end

always begin

#6 e=0;s=2’b00;i=4’b0001; #6 e=1;s=2’b01;i=4’b0010;

#6 e=1;s=2’b10;i=4’b0100; #6 e=1;s=2’b10;i=4’b1000; end

initial $monitor($time ,” input e = %b , s= %b , i = %b , output o = %b “ ,e,s,i,o);
initial #48 $stop; endmodule
Figure 3.34 Design module and a test bench for a 4-to-1 mux module with tri-state
output.

output

0 input e = 0 , s= xx , i = 0000 , output o = z

6 input e = 0 , s= 00 , i = 0001 , output o = z #12 input e = 1 , s= 01 , i = 0010 , output o = 1 #18

input e = 1 , s= 10 , i = 0100 , output o = 1 #24 input e = 1 , s= 10 , i = 1000 , output o = 0 #30

input e = 0 , s= 00 , i = 0001 , output o = z #36 input e = 1 , s= 01 , i = 0010 , output o = 1 #42

input e = 1 , s= 10 , i = 0100 , output o = 1

Geethanjali College of Engg.&Tech. Department of ECE IV B.Tech II-
Sem

DIGITAL DESIGN THROUGH VERILOG HDL Page 93

Figure 3.35 Results of running the test bench of the 4-to-1 mux module in Figure 3.34.

Figure 3.36 Synthesized output of the 4-to-1 mux module of Figure 3.34
module ttrimux2_1(out,e,i,s); input[1:0]i;
input e; input s; output out; wire o;
bufif0 g1(o,i[0],s); bufif1 g2(o,i[1],s);
bufif1 g3(out,o,e); endmodule
//testbench
module ttst_ttrimux2_1(); reg e;
reg [1:0]i; reg s;
ttrimux2_1 mm(out,e,i,s); initial
begin
e =0; i = 2’b 00;end always

begin

#4 e =0;{i,s} = 3’b 01_0; #4 e =1;{i,s} = 3’b 01_0; #4 e =1;{i,s} = 3’b 10_1; #4 e =1;{i,s} = 3’b 00_1;

#4 e =1;{i,s} = 3’b 10_1; #4 e =1;{i,s} = 3’b 01_0; #4 e =1;{i,s} = 3’b 00_0; #4 e =1;{i,s} = 3’b 11_0; end

initial $monitor($time ,” enable e = %b ,
s= %b , input i = %b ,output out = %b “,e ,s,i,out); initial #48 $stop;
endmodule
Figure 3.37 Design module and a test bench for a 2-to-1 mux module formed with
tri-statebuffers.
output

0 enable e = 0, s= x, input i = 00,output out = z

4 enable e = 0, s= 0, input i = 01,output out = z

8 enable e = 1, s= 0, input i = 01,output out = 1 #12 enable e = 1, s= 1, input i = 10,output out =

1 #16 enable e = 1, s= 1, input i = 00,output out = 0 #20 enable e = 1, s= 1, input i = 10,output

out = 1 #24 enable e = 1, s= 0, input i = 01,output out = 1 #28 enable e = 1, s= 0, input i =

00,output out = 0 #32 enable e = 1, s= 0, input i = 11,output out = 1 #36 enable e = 0, s= 0, input

i = 01,output out = z #40 enable e = 1, s= 0, input i = 01,output out = 1 #44 enable e = 1, s= 1,

input i = 10,output out = 1

Figure 3.38 Results of running the test bench of the 2-to-1 mux module in Figure 3.37.

module ttrimux4_1(out,e,i,s); input[3:0]i;

input e; input[1:0]s; output out; tri o;

Geethanjali College of Engg.&Tech. Department of ECE IV B.Tech II-
Sem

DIGITAL DESIGN THROUGH VERILOG HDL Page 94

tri [1:0]o1;
bufif0 g1(o1[0],i[0],s[0]); bufif1 g2(o1[0],i[1],s[0]); bufif0 g3(o1[1],i[2],s[0]); bufif1
g4(o1[1],i[3],s[0]); bufif0 g5(o,o1[0],s[1]); bufif1 g6(o,o1[1],s[1]); bufif1 g7(out,o,e);
endmodule
//testbench
module ttst_ttrimux4_1(); reg e;
reg [3:0]i; reg [1:0]s;
ttrimux4_1 mm(out,e,i,s); initial
begin

e = 0;

i = 4’b 0000;

end always

begin

#4 e =0;{i,s} = 6’b 0001_00; #4 e =1;{i,s} = 6’b 0001_00; #4 e =1;{i,s} = 6’b 0010_01; #4 e =1;{i,s}

= 6’b 0000_01; #4 e =1;{i,s} = 6’b 0100_10; #4 e =1;{i,s} = 6’b 0101_10; #4 e =1;{i,s} = 6’b 1000_11;

#4 e =1;{i,s} = 6’b 0000_11; end

initial $monitor($time ,” enable e = %b , s= %b , input i = %b ,output out = %b “,e
,s,i,out);
initial #48 $stop; endmodule
Figure 3.40 Design module and a test bench for a 4-to-1 mux module formed with
tri-statebuffers.

output
0 enable e =0,s=xx, input i =0000, output out = z

4 enable e =0,s=00, input i =0001, output out = z

8 enable e =1, s=00,input i =0001 ,output out = 1 #12 enable e =1, s=01,input i =0010 ,output

out = 1 #16 enable e =1, s=01,input i =0000 ,output out = 0 #20 enable e =1, s=10,input i =0100

,output out = 0 #24 enable e =1, s=10,input i =0101 ,output out = 1 #28 enable e =1, s=11,input

i =1000 ,output out = 1 #32 enable e =1, s=11,input i =0000 ,output out = 0 #36 enable e =0,

s=00,input i =0001 ,output out = z #40 enable e =1, s=00,input i =0001 ,output out = 1 #44

enable e =1, s=01,input i =0010 ,output out = 1

Figure 3.41 Results of running the test bench of the 4-to-1 mux module in Figure 3.40.

3.10 DESIGN OF FLIP-FLOPS WITH GATE PRIMITIVES

The basic RS latch can be designed using gate primitives. Two instantiations of
NAND or NOR gates suffice here. More involved flip-flops, registers, etc., can be built
around these. Some of the level triggered versions of such flip-flops are taken up for
design. Subsequently, the edge-triggered flip-flop of the 7474 type is developed in a

Geethanjali College of Engg.&Tech. Department of ECE IV B.Tech II-
Sem

DIGITAL DESIGN THROUGH VERILOG HDL Page 95

skeletal form. More generalized versions are left as exercises.

Example 3.10.1 A Simple Latch
Figure 5.1 shows the design description of a simple latch formed with two NAND
gates. A test bench for the same is shown in Figure 5.2 along with the results of the
simulation run for 20 time steps. The test-bench has a block within a begin-end

construct which reassigns values torbandsbat two successive time stepintervals. The
whole sequence described within the block lasts for 10 ns. Defining the block within
the always construct repeats the above assignment sequence cyclically until the

simulation stops. The latch has been synthesized, and the synthesized circuit is shown
in Figure.

Geethanjali College of Engg.&Tech. Department of ECE IV B.Tech II-
Sem

DIGITAL DESIGN THROUGH VERILOG HDL Page 96

module sbrbff(sb,rb,q,qb); input sb,rb;
output q,qb; nand(q,sb,qb); nand(qb,rb,q); endmodule

Figure A module to instantiate the AND gate primitive and test it.

module tstsbrbff; //test-bench reg sb,rb;
wire q,qb;
sbrbff ff(sb,rb,q,qb); initial
begin

sb =1’b1; rb =1’b0;

end always begin
#2 sb =1’b1;rb =1’b1; #2 sb =1’b0;rb =1’b1; #2 sb =1’b1;rb =1’b1; #2 sb =1’b1;rb

=1’b0; #2 sb =1’b1;rb =1’b1;

end
initial $monitor($time, “ sb = %b, rb = %b, q = %b, qb =
%b”,sb,rb,q,qb);
initial #20 $stop; endmodule

Simulation results

11.5 0 sb = 1 , rb = 0 , q = 0 , qb = 1

11.6 2 sb = 1 , rb = 1 , q = 0 , qb = 1

11.7 4 sb = 0 , rb = 1 , q = 1 , qb = 0

11.8 6 sb = 1 , rb = 1 , q = 1 , qb = 0

11.9 8 sb = 1 , rb = 0 , q = 0 , qb = 1

11.10 10 sb = 1 , rb = 1 , q = 0 , qb = 1

11.11 14 sb = 0 , rb = 1 , q = 1 , qb = 0

11.12 16 sb = 1 , rb = 1 , q = 1 , qb = 0

11.13 18 sb = 1 , rb = 0 , q = 0 , qb = 1

Figure A test bench for the flip-flop of Figure 5.1 and results of
running the test bench.

Geethanjali College of Engg.&Tech. Department of ECE IV B.Tech II-Sem

DIGITAL DESIGN THROUGH VERILOG HDL Page 97

Example 3.10.2 An RS Flip-Flop
The design module of an RS flip-flop along with a test bench for the same is shown in
Figure 5.4. The module is a slight modification of the flip-flop of Figure 5.1. The
simulation results are shown in Figure 5.5. The synthesized circuit is shown in Figure
5.6. One can easily relate the difference between this circuit and that of Figure 5.3 to
the corresponding difference between the respective design modules.

module srff(s,r,q,qb); input s,r;
output q,qb; wire ss,rr; not(ss,s),(rr,r); nand(q,ss,qb); nand(qb,rr,q); endmodule
module tstsrff; //test-bench reg s,r;
wire q,qb;
srff ff(s,r,q,qb); initial
begin

s =1’b1; r =1’b0;

end always begin
#2 s =1’b0;r =1’b0; #2 s =1’b0;r =1’b1; #2 s =1’b0;r =1’b0; #2 s =1’b1;r =1’b0; #2 s =1’b0;r =1’b0;

end
initial $monitor($time, “ s = %b, r = %b, q = %b, qb = %b “,s,r,q,qb);
initial #20 $stop; endmodule

Figure 5.4 Module of an RS flip-flop with NAND gates and a test bench for the same.

0 s = 1 , r = 0 , q = 1 , qb = 0

2 s = 0 , r = 0 , q = 1 , qb = 0

4 s = 0 , r = 1 , q = 0 , qb = 1

6 s = 0 , r = 0 , q = 0 , qb = 1

8 s = 1 , r = 0 , q = 1 , qb = 0

10 s = 0 , r = 0 , q = 1 , qb = 0

14 s = 0 , r = 1 , q = 0 , qb = 1

16 s = 0 , r = 0 , q = 0 , qb = 1

18 s = 1 , r = 0 , q = 1 , qb = 0

Figure Results of running the test bench for the flip-flop

Geethanjali College of Engg.&Tech. Department of ECE IV B.Tech II-Sem

DIGITAL DESIGN THROUGH VERILOG HDL Page 98

Figure Synthesized circuit of the flip-flop module
3.12 DELAYS

Verilog has the facility to account for different types of propagation delays of circuit elements.
Any connection can cause a delay due to the distributed nature of its resistance and capacitance.
Due to the manufacturing tolerances, these can vary over a range in any given circuit [Bignel,
Sedra]. Similar delays are present in gates too. These manifest as propagation delays in the 0 to 1
transitions and 1 to 0 transitions from input to the output. Such propagation delays can differ
for the two types of transitions. A variety of such delays can be accommodated in Verilog.
Sometimes manufacturers adjust input and output impedances of circuit elements to specific
levels and exploit them to reduce interface hardware. These too can be accommodated in
Verilog design descriptions [Ciletti, Palnitkar].

Figure Synthesized circuit of the flip-flopdffgatnew1
3.12.1 Net Delay

One of the simplest delays is that of a direct connection – a net. It can be part of the
declaration statement

wire #2 nn; //nnis declared as a net with a propagation delay of 2 time steps

Here nn is declared as a net with an associated propagation delay of 2 time steps. The delay is the

same for the positive as well as the negative transitions. The same is illustrated in Figure 5.21(a), which

connects two circuit blocks through a net nn with a delay of 2 time steps associated with it. The

module in Figure 5.22 is a simple realization of the same. A test bench for the module is also shown in

the figure. The simulation results are shown in Figure 5.21(b), which bring out the effect of the net

delay clearly.

Similar delays can be assigned to other types of nets as well. Whenever a variable or a signal is

defined as a net and no delay is specified for it, the associated delay is taken as zero. This is true of

instantiations of modules as well. The impedance connected as well as the type of loading can differ for the

two transitions. The propagation delay too can differ accordingly. Two such delays can be specified as

follows:

Geethanjali College of Engg.&Tech. Department of ECE IV B.Tech II-Sem

DIGITAL DESIGN THROUGH VERILOG HDL Page 99

Wire # (2, 1) nm;

Here nm is declared as a net with two distinct propagation delays; the positive (0 to 1) transition

has a delay of 2 time steps associated with it. The negative

Net nn

x

y
(a)

Circuit 1

Circuit 2

 Common ground line

x

2

 2

(b)

y

0 5 10

Time steps

Figure A net connecting two circuit blocks and the delay through it: (a)
Connectiondiagram (b) Typical signal waveforms at the input and output ends of the
net.

module netdelay(x,y); input x;
output y; wire #2 nn;
not (nn,x); //circuit1 in Figure 5.21 buf y = x; //circuit2 in Figure 5.21 endmodule
module tst_netdelay ; //test-bench reg x;
wire y;
netdelay nd(x,y); initial
begin

x =1’b0; #6 x =~x;

end
initial #20 $stop; endmodule

Figure A module to illustrate net delay and a test bench for the same.

Geethanjali College of Engg.&Tech. Department of ECE IV B.Tech II-Sem

DIGITAL DESIGN THROUGH VERILOG HDL Page 100

(1 to 0) transition has a delay of 1 time step. The delays are explained in Figure 5.23.
The module of Figure 5.22 has been modified and shown in Figure 5.24; the
propagation delays are different for rise and fall here.

Net nm

 x

y
(a)

Circuit 1

Circuit 2

 Common ground line

(b)

x

2

1

y

0 5 10

 Time steps

Figure A net connecting two circuit blocks and the delays through it: (a)
Connectiondiagram (b) Typical signal waveforms at the input and output ends of the
net.
module netdelay1(x,y); input x;
output y;
wire #(2,1) nn; not (nn,x); y=nn; endmodule
module tst_netdelay1; //test-bench reg x;
wire y;
netdelay1 nd(x,y); initial
begin

x =1’b0; #6 x =~x;

end
initial #20 $stop; endmodule

Figure A module to demonstrate different delays for rise and fall times on a net.

3.12.2 Gate Delay

Gates too can have delays associated with them. These can be specified as part of the
instantiation itself.

and #3 g (a, b, c);

The above represents an AND gate description with a uniform delay of 3 ns for all transitions from

input to output. A more detailed description can be as follows:

and #(2, 1) (a, b, c);

With the above statement the positive (0 to 1) transition at the output has a delay of 2 time steps

while the negative (1 to 0) transition has a delay of 1 time step. Figure shows a module to illustrate the

delays associated with gate primitives. A test bench for the same is also shown in the figure. The results

Geethanjali College of Engg.&Tech. Department of ECE IV B.Tech II-Sem

DIGITAL DESIGN THROUGH VERILOG HDL Page 101

of running the test bench are shown in Figure 5.27. The AND gate instantiation in Figure has different

delays for the output transitions; respective waveforms are shown in Figure

module gade(a,a1,b,c,b1,c1); input b,c,b1,c1;
output a,a1;
or #3gg1(a1,c1,b1); and #(2,1)gg2(a,c,b); endmodule
module tst_gade();//test-bench reg b,c,b1,c1;
wire c,c1;
gade ggde(a,a1,b,c,b1,c1); initial
begin
b =1’b0;c =1’b0;b1 =1’b0;c1=1’b0; end
always begin

#5 b =1’b0;c =1’b0;b1 =1’b1;c1=1’b1; #5 b =1’b1;c =1’b1;b1 =1’b0;c1=1’b0; #5 b =1’b1;c

=1’b0;b1 =1’b1;c1=1’b0; #5 b =1’b0;c =1’b1;b1 =1’b0;c1=1’b1; #5 b =1’b1;c =1’b1;b1 =1’b1;c1=1’b1;

#5 b =1’b1;c =1’b1;b1 =1’b1;c1=1’b1;

end
initial $monitor($time , “ b= %b , c = %b , b1 = %b ,c1 = %b , a = %b ,a1 = %b”
,b,c,b1,c1,a,a1);
initial #30 $stop; endmodule

Figure 5.25 Module to demonstrate the delays with gates.

b

 a

c

(a)

Figure AND gate instantiation with different delays for the positive and
negativetransitions and associated waveforms: (a) Gate instantiated.

Geethanjali College of Engg.&Tech. Department of ECE IV B.Tech II-Sem

DIGITAL DESIGN THROUGH VERILOG HDL Page 102

b

c 2 ts 1 ts

2 ts 1 ts

a

0 4 8 12 16
time steps

(b)

Figure (cont’d) (b) associated waveforms (time step has been abbreviated
to “ts” inthe diagram).

In a more detailed design description, delays can be associated with nets as well as

gates. Consider the design description shown in Figure 5.28(a). It has a total of 8 different

time delay values specified. All these are hypothetical and different from each other. It is

done intentionally to bring out the effect of each of them on the concerned gates and

signals. The circuit for this design description is shown in Figure 5.28(b). Typical waveforms

of input signals as well as other signals are shown in Figure 5.29, to illustrate the different

delays in the design description. Figures 5.29(a) and 5.29(b) illustrate how changes in one of

the inputs

 b1 – affect the other signals; the signals and gates affected are shown

0 b= 0, c = 0 , b1 = 0 ,c1 = 0 , a = x ,a1 = x

1 b= 0, c = 0 , b1 = 0 ,c1 = 0 , a = x ,a1 = 0

3 b= 0, c = 0 , b1 = 0 ,c1 = 0 , a = 0 ,a1 = 0

5 b= 0, c = 0 , b1 = 1 ,b1 = 1 , a = 0 ,a1 = 0

7 b= 0, c = 0 , b1 = 1 ,c1 = 1 , a = 0 ,a1 = 1

10 b= 1, c = 1 , b1 = 0 ,c1 = 0 , a = 0 ,a1 = 1

11 b= 1, c = 1 , b1 = 0 ,c1 = 0 , a = 0 ,a1 = 0

13 b= 1, c = 1 , b1 = 0 ,c1 = 0 , a = 1 ,a1 = 0

15 b= 1, c = 0 , b1 = 1 ,c1 = 0 , a = 1 ,a1 = 0

17 b= 1, c = 0 , b1 = 1 ,c1 = 0 , a = 1 ,c1 = 1

18 b= 1, c = 0 , b1 = 1 ,c1 = 0 , a = 0 ,c1 = 1

20 b= 0, c = 1 , b1 = 0 ,c1 = 1 , a = 0 ,a1 = 1

25 b= 1, c = 1 , b1 = 1 ,c1 = 1 , a = 0 ,a1 = 1

28 b= 1, c = 1 , b1 = 1 ,c1 = 1 , a = 1 ,a1 = 1

Geethanjali College of Engg.&Tech. Department of ECE IV B.Tech II-Sem

DIGITAL DESIGN THROUGH VERILOG HDL Page 103

Figure Results of running the test bench of above module in Figure 5.25.

Geethanjali College of Engg.&Tech. Department of ECE IV B.Tech II-Sem

DIGITAL DESIGN THROUGH VERILOG HDL Page 104

highlighted in Figure 5.29(a). Throughout this period, input c1 is taken as at 1

state while inputs b2 and c2 remain at 0 state. The propagation delays of

signals at point P and Q and that for the signal a are shown in Figure 5.29(b).
These conform to the delays specified in the design segment of Figure 5.28(a).

Subsequently, input c1 goes down to 0 state and input b1 remains at 0 state

itself. Only signal b2 changes. The affected signals and gates are shown
highlighted in Figure 5.29(c). The waveforms of signals affected and the
associated propagation designs are shown in Figure 5.29(d). These too
conform to the program segment of Figure 5.28(a).

module gates(b1,b2,c1,c2,a); input b1,b2,c1,c2;
wire #(2,1)a1,a2; output a;
and #(3,4)g1(a1,b1,c1); and #(5,6)g2(a2,b2,c2); or #(8,7)g3(a,a1,a2);
endmodule
module tst_gates;//test-bench reg b1,b2,c1,c2;
gates gg(b1,b2,c1,c2,a); initial
begin

b1=1’b0;c1=1’b0;b2=1’b0;c2=1’b0;

end
initial #100 $stop;
always begin

#2b1=1’b0;c1=1’b0;b2=1’b1;c2=1’b1;

#2b1=1’b1;c1=1’b1;b2=1’b0;c2=1’b0;

#2b1=1’b0;c1=1’b1;b2=1’b0;c2=1’b0;

#2b1=1’b0;c1=1’b0;b2=1’b1;c2=1’b0;

#2b1=1’b1;c1=1’b0;b2=1’b1;c2=1’b1;

#2b1=1’b1;c1=1’b1;b2=1’b0;c2=1’b0;

#2b1=1’b1;c1=1’b1;b2=1’b1;c2=1’b0;

#2b1=1’b0;c1=1’b0;b2=1’b1;c2=1’b1;

end
initial $monitor($time,” b1= %b , c1 = %b ,b2 = %b , c2 = %b , a = %b
“,b1,c1,b2,c2,a);
endmodule

Figure A design having eight different time delay values.

Geethanjali College of Engg.&Tech. Department of ECE IV B.Tech II-
Sem

DIGITAL DESIGN THROUGH VERILOG HDL Page 105

 b1
P

 g1
Q

c1

a1

 g3

a2 a

 b2

S

g2

c2 R

Figure (b) The circuit for the module considered in Figure 5.28(a).

 b1

g1
P

 Q

 c1
g3

 a

 b2
g2

 c2

(a)

b1

3 ts
4 ts

Point P

 2 ts
1 ts

Point Q

 8 ts
7 ts

a

0 10 20 30

(b)
 Time steps

Figure Illustration of signal delays in the design description segment in
Figure 5.28:

(a) The circuit portion active during changes to signal b1. (b) Signal waveforms following

changes to signal b1 (time step has been abbreviated as ts in the diagram).

Geethanjali College of Engg.&Tech. Department of ECE IV B.Tech II-Sem

DIGITAL DESIGN THROUGH VERILOG HDL Page 106

b1
g1

c1
g3 ©

 a

c2
g2 S

 R

b2

b2

5 ts
6 ts

Point R

2 ts
1 ts

Point S

 (d)

8 ts 7 ts

a

40 50 60 70 tu’s

Figure (cont’d) © The circuit portion active during changes to signal b2. (d)
Signalwaveforms following changes to signal b2 (time step has been
abbreviated as ts in tbe diagrams).

3.12.3 Delays with Tri-state Gates

For tri-state gates the delays associated with the control signals can be
different from those of the input as well as the output. The instantiation
inclusive of this is shown in Figure 5.30 for a tri-state buffer of the bufif1

type. Three time delay values are specified:
1. The first number represents the delay associated with the positive (0 to 1) transition

of the output.

2. The second number represents the delay associated with the negative (1 to 0)

transition of the output.

3. The third number represents the delay for the output to go to the hi-Z state as the

control signal changes from 1 to 0 (i.e., ON to OFF command).

Geethanjali College of Engg.&Tech. Department of ECE IV B.Tech II-
Sem

DIGITAL DESIGN THROUGH VERILOG HDL Page 107

bufif1 @ (1, 2, 3) b1(ao, ai, c);

Delay for the 0 to 1 transition of ao

Delay for the 1 to 0 transition of ao

Delay for the output to go to the hi-z state as c changes from 1 to 0

Figure Delays associated with a typical tri-state gate.

Delays for the other tri-state buffers – namely bufif0, notif1 and notif0 – may be

specified in a similar manner.

The turn-off time — 2 time steps here — represents the time for which the charge will be

stored in the output line after the control line turns off. Values of delay time and storage time

can be specified in this manner for all the types of tri-state type gates. The following are

noteworthy here:

Delays and storage times can be specified on the gate primitives and the nets
but not on regs.

All three time values are separately specified in the most versatile case.
If only two time-values are specified, these are interpreted by Verilog as the rise (0 to 1) and fall (1 to

0) time, respectively. The turn-off time (delay) is

taken as the smaller of these two.

If only one time value is specified, it is taken as the rise time, the fall time,
and the turn-off time.

If no time value is specified, the rise and fall times at the output are taken as zero. The

turn-off is taken as instantaneous.

Normally the delay time of any IC varies over a range for ICs from different production

batches (as well as in any one batch). It is customary for manufacturers to specify delays and

their range in the following manner:

Max delay: The maximum value of the delay in a batch; that is, the delay
encountered in practice is guaranteed to be less than this in the worst case.

Min. delay: Minimum value of delay in a batch; that is, the specified signal is
guaranteed to be available only after a minimum of time specified. Typ. delay: Typical or

representative value of the delay.

Geethanjali College of Engg.&Tech. Department of ECE IV B.Tech II-
Sem

DIGITAL DESIGN THROUGH VERILOG HDL Page 108

Each of the delays in a gate primitive or for a net can be specified in terms of these three

values. For example

and #(2:3:4) g1(a0, a1, a2);

can instantiate an AND gate with the following time delay specifications: The 0
to 1 rise time and the 1 to 0 fall time are equal.

The minimum value of either is 2 time steps. Typical value is 3 time steps
and the maximum value is 4 time steps.

Note that the colon that separates the numbers signifies that the timings specified are

the minimum, typical, and maximum values. At the time of simulation, one can specify the

simulation to be carried out with any of these three delay values. If the same is not

specified, the simulation is carried out with the typical delay value.

The group of minimum, typical, and maximum delay values for the propagation delays can

be specified separately for any gate primitive. Thus an AND gate primitive can be specified as

and #(1:2:3, 2:4:6) g2(b0, b1, b2);

Here for the 0 to 1 transition of the output (rise time) the gate has a minimum delay value of

1 ns, a typical value of 2 ns, and a maximum value of 3 ns. Similarly, for the 1 to 0 transition (fall

time) the gate has a minimum delay value of 2 ns, a typical delay value of 4 ns, and a maximum

delay value of 6 ns. Such delay specifications can be associated with nets as well as tri-state type

gates also.

Examples

wire #(1:2:3) a;/* The net a has a propagation delay whose minimum,

typicaland maximum values are 1 ns, 2 ns, and 3 ns, respectively*/
bufif1 #(1:2:3, 2:4:6, 3:6:9) g3 (a0, b0, c0);

/* The different delay values for the buffer are as follows:
The output rise time (0 to 1 transition) has a minimum value of 1 ns, a typical

value of 2 ns and a maximum value of 3 ns.

The output fall time (1 to 0 transition) has a minimum value of 2 ns, a typical
value of 4 ns and a maximum value of 6 ns.

The output turn-off time (1 to 0) has a minimum value of 3 ns, a typical value of 6 ns,

and a maximum value of 9 ns. */

A typical design can have a number of circuit blocks like gates, flip-flops, etc., with

associated interconnections. The individual nets and gates may havetheir own separate delays.

The following general observations are in order regarding the overall delays through the circuit:

Geethanjali College of Engg.&Tech. Department of ECE IV B.Tech II-
Sem

DIGITAL DESIGN THROUGH VERILOG HDL Page 109

A normal design can have many gates and nets in its signal paths. The delay through any

path for a signal depends on the path and the type of transitions at each stage.

3.13 STRENGTHS AND CONTENTION RESOLUTION

In practical situations, outputs of logic gates and signals on nets in a circuit have
associated source impedances. When the outputs of two gates are joined
together, the signal level is decided by the relative magnitudes of the source
impedances. Sometimes a disparity between the impedances is intentionally
introduced to minimize circuit hardware. Effects of such differences in the
impedances are indirectly introduced in design descriptions by assigning
“strengths” to specific signals (see also Section 3.9). Signal strength declarations
are of two types – those associated with outputs of gate primitives and those
with nets.

3.13.1 Strengths of Gate Primitives

Gate output strengths can be specified separately. Table 5.1 gives the names
associated with strengths, respective abbreviations, and their order by weight.
These hold good for logic 1 state as well as the 0 state.

Table Strength levels associated with outputs of gate primitives

 Name supply strong pull weak High impedance

Abbreviations

 su1 st1 pu1 we1 HiZ1

su0 st0 pu0 we0 HiZ0

 Strength Strongest Weakest

Geethanjali College of Engg.&Tech. Department of ECE IV B.Tech II-
Sem

DIGITAL DESIGN THROUGH VERILOG HDL Page 110

buf (supply1, pull0) (o, i);

Strength of 1 state in the output Strength of 0 state in the output

Figure Format for specifying strengths in the instantiation of a gate primitive.

The strengths associated with the output of a gate primitive can be specified

separately for the two logic levels. The format for the same is shown in Figure 5.31 for a

specific case; the format remains the same for all types of gate primitives.

3.14 NET TYPES

wire is possibly the simplest type of net declaration. trireg

considered in thelast section is another. A variety of other net types are
possible. Most of them are provided for specific types of contention
resolution.

3.14.1 wand and wor Types of Nets

Strengths on nets can be decided in ways other than a direct declaration
also. These offer additional flexibility to the circuit designer. Consider the
example of Figure 5.33 for which the input–output values are shown in

Table 5.3. For the signal input combination i1 = 0 and i2 = 1, signal o is
indeterminate. However, it may be made specific in two alternate ways:
‘wand’ and wor are two types of net declarations for such contention

resolution. wand is a wire declaration, which resolves to AND logic in

case of contention. wor is a wire declaration, which resolves to OR logic

in case of a contention. Use of wand and wor nets is illustrated here

through two simple examples crafted for the purpose.

Example 5.8 Illustration of wand type net
Figure 5.35 shows a design module where the outputs of two buffers
drive the same net; the net has been declared to be a wand type, and any

contention with the

Geethanjali College of Engg.&Tech. Department of ECE IV B.Tech II-Sem

DIGITAL DESIGN THROUGH VERILOG HDL Page 111

possibility of indeterminate output is resolved according to AND logic. A test bench
and simulation results are also shown in the figure. The input and output logic values
and the nature of contention resolutions wherever it occurs are listed out in Table 5.7
also. Contention can be seen to be resolved in two possible ways:

1. When i1 = 1 and i2 = 0, the stronger signal i1 at the 1 level prevails and o = 1. The

contention is resolved according to the strengths.

2. When i1 = 0 and i2 = 1, both signals being equally strong, the value of o is decided according

to AND logic.

The synthesized version of the circuit is shown in Figure 5.36; the circuit translates
into an AND gate which is erroneous (this is not consistent with the desired input–
output relationship shown in Table 5.7).
module wand1(i1,i2,o); input i1,i2;
output o; wand o;
buf(strong1,pull0)g1(o,i1);
buf(pull1,pull0)g2(o,i2); endmodule
module tst_wand1; //testbench reg i1,i2;
wand1 ww(i1,i2,o); initial
begin

i1=0;i2=0;//o =0; no contention #2i1=0;i2=1;//o =0; contention resolved //according to wand

declaration

#2i1 =1;i2 =0;//out=1; contention resolved by //stronger signal

#2i1 =1;i2=1;//out =1; no contention.

end
initial $monitor($time,”i1=%b,i2=%b,o=%b”,i1,i2,o); endmodule

output

0i1=0,i2=0,o=0
2i1=0,i2=1,o=0
4i1=1,i2=0,o=1
6i1=1,i2=1,o=1

Figure A design module to illustrate use of the wand-type net; a test bench and
theresults of simulation are also shown.

 Table Output values for different inputs of the design in Figure 5.35

 Logic Logic Logic
Remarks

value of i1

value of i2
value of o

0 0 0 No contention

0
1

0 Contention resolved according to wand

declaration

1 0 1 Contention resolved by the stronger signal

1 1 1 No contention

Geethanjali College of Engg.&Tech. Department of ECE IV B.Tech II-Sem

DIGITAL DESIGN THROUGH VERILOG HDL Page 112

Example 5.9 Illustration of wor-type net
Consider the design segment in Figure 5.35 with o being declared as a wor type of

net instead of a wand type. The corresponding design module is shown in Figure

5.37. A test bench and simulation results are also shown in the figure. The outputs for
all possible combinations of inputs are given in Table 5.8. Contention can be seen to
be resolved in two possible ways:

1. When i1 = 1 and i2 = 0, the stronger signal i1 at the 1 level prevails and o = 1. The

contention is resolved according to the strengths.

2. When i1 = 0 and i2 = 1, both signals being equally strong, the value of o is decided according

to OR logic.

The synthesized version of the circuit is shown in Figure 5.38; the circuit translates into an OR

gate; this is consistent with the desired input–output relationship shown in Table 5.8.

Figure 5.36 Synthesized version of the module with the wand-type net in Figure
5.35above.

Geethanjali College of Engg.&Tech. Department of ECE IV B.Tech II-Sem

DIGITAL DESIGN THROUGH VERILOG HDL Page 113

112 GATE LEVEL MODELING – 2

module wor1(i1,i2,o); input i1,i2;
output o; wor o;
buf(strong1,pull0)g1(o,i1);
buf(pull1,pull0)g2(o,i2); endmodule
module tst_wor1;//testbench reg i1,i2;
wor1 ww(i1,i2,o); initial
begin

i1=0;i2=0;//out =0 no contention

#2 i1=0;i2=1;//out =1 contention resolved according //to wor
declaration
#2 i1 =1;i2 =0;//out=1 contention resolved by //stronger signal
#2 i1 =1;i2=1;//out =1 no contention. end
initial $monitor($time,”i1=%b,i2=%b,o=%b”,i1,i2,o); endmodule

Output

0 i1=0, i2=0, o=0
2 i1=0, i2=1, o=1
4 i1=1, i2=0, o=1
6 i1=1, i2=1, o=1

Figure A design module to illustrate use of thewor-type net; a test

bench and theresults of simulation are also shown.

Geethanjali College of Engg.&Tech. Department of ECE IV B.Tech II-Sem

DIGITAL DESIGN THROUGH VERILOG HDL Page 114

5

MODELING AT DATA FLOW LEVEL

5.1 INTRODUCTION

Gate level design description makes use of the gate primitives available in Verilog. These are
repeatedly and judiciously instantiated to achieve the full design description. Digital designers
familiar with the basic logic gates and SSI / MSI circuits can describe the desired target circuit in
terms of them on paper and proceed with the design description based on them. This was the
approach followed in the last two chapters; it is practical for comparatively smaller designs – say
those involving tens of gates. One can define modules in terms of primitives involving tens of gates
and instantiate them in macro-modules. This increases the complexity of designs that can be handled
by one order. Beyond that the gate level design description becomes too complicated to be practical.

Data flow level description of a digital circuit is at a higher level. It makes the circuit description

more compact as compared to design through gate primitives. We have a number of operands and

operations representing the simulations directly or indirectly. The operations are carried out on the

operand(s) in singles or in combinations [IEEE]. The results are assigned to nets. The operand-

operation-assignments representing data flow are carried out repeatedly to complete the design

description [Thomas & Morby]. Further, these can be combined judiciously with the gate

instantiations wherever necessary. With such combinations, design description of a comprehensive

nature can be accommodated.

5.2 CONTINUOUS ASSIGNMENT STRUCTURES

A simple two input AND gate in data flow format has the form

assign c = a && b;

Here
“assign” is the keyword carrying out the assignment operation. This type of assignment is

called a continuous assignment.

a and b are operands – typically single-bit logic variables.

“&&” is a logic operator. It does the bit-wise AND operation on the two
operands a and b.

“=” is an assignment activity carried out.

c is a net representing the signal which is the result of the assignment.
In general, an operand can be of any one of the following types:
A constant number [including real].
Net of a scalar or vector type including part of a vector.

Register variable of a scalar or vector type including part of a vector. Memory element.

Geethanjali College of Engg.&Tech. Department of ECE IV B.Tech II-Sem

DIGITAL DESIGN THROUGH VERILOG HDL Page 115

A call to a function that returns any of the above. The function itself can be a user-defined or

of a system type [see Chapter 9].

There are other types of operators as well [see Section 6.5]. All types of combinational circuits can

be modeled using continuous assignments. One need not necessarily resort to instantiation of gate

primitives.

An AND gate module which uses the above assignment is shown in Figure 6.1. The test bench for

the same is shown in Figure 6.2, and the waveforms of nets a, b, and c obtained with the simulation

are shown in Figure 6.3. [The simulation software used has the facility to capture the waveforms of

selected signals in the “run” phase; this has been invoked to get the waveforms in Figure 6.3. No

separate $monitor command is included in the test bench of Figure 6.2. The same approach has

been adopted with many of the test benches elsewhere in the book.]

Multiple assignments can be carried out through a direct extension of the structure adopted in the

above case. Consider the AOI gate in Figure 6.4. A few patterns of the assignments for the circuit are

given in Figure 6.5 to Figure 6.7.

module andgdf(c,a,b); output c;
input a,b; wire c;
assign c = a&&b; endmodule

Figure 5.1 A module with an AND gate at the data flow level.

module tst_andgdf; //TESTBENCH reg a,b;
wire c; initial begin
a = 1’b0; b = 1’b0; #4 a = 1’b1;
#4 b = 1’b1; #4 a = 1’b0; #4 b = 1’b0; #4 a = 1’b1; end
andgdf g1(c,a,b); initial #20 $stop; endmodule

Figure 5.2 A test bench for the module in Figure 6.1.

a

b

c

0 10 20

ns

Figure 5.3 Waveforms of nets a, b, and c obtained with the simulation of the module

Geethanjali College of Engg.&Tech. Department of ECE IV B.Tech II-Sem

DIGITAL DESIGN THROUGH VERILOG HDL Page 116

inFigure 5.1 with the test bench in Figure 5.2.

a e

b
g1 g

c f

d

Figure 5.4 An A-O-I gate circuit.

assign e = a&&b, f = c&&d, g1 = e|f, g = ~g1;
Figure 5.5 A data flow level assignment statement to realize the A-O-I gate in Figure
6.4.

assign e = a & b, f = c & d; assign g1 = e|f, g = ~g1;
Figure 5.6 Another set of data flow level assignment statements to realize the A-O-I
gate inFigure 5.4.

assign e = a & b;
assign f = c & d;
assign g1 = e ! f;
assign g = ~g1;

Figure 5.7 Yet another set of data flow level assignment statements to realize the A-
O-Igate in Figure 5.4.

Observations:

The semicolon terminates an assignment statement. Commas separate
different assignments in an assignment statement.

“|” is the bit-wise OR operator and “~” the bit-wise negation operator in
Verilog.

All the quantities in the left-hand side of a continuous assignment have to be
of net type. Thus e, f, g, and g1 have to be declared as nets.

All the operations in an assignment are evaluated whenever any of the operands in the

assignment changes value. Further, all the assignments are carried out concurrently. Hence the

order of the assignments or the statements

is immaterial.

The right-hand sides of assignment statements can be nets, regs, or function calls. Here a, b, c,

and d can be nets or regs. All other variables have to be nets.

The module for the A-O-I gate of Figure 5.4 is given in Figure 5.8 – it is formed

Geethanjali College of Engg.&Tech. Department of ECE IV B.Tech II-Sem

DIGITAL DESIGN THROUGH VERILOG HDL Page 117

around the assignment statement of Figure5.5. The same can be tested through a test
bench.

Geethanjali College of Engg.&Tech. Department of ECE IV B.Tech
II-Sem

DIGITAL DESIGN THROUGH VERILOG HDL Page 118

5.2.1 Combining Assignment and Net Declarations

The assignment statement can be combined with the net declaration itself making
the assignment implicit in the net declaration itself. Thus the two statements

wire c;

assign c = a & b;

can be combined as

wire c = a & b;

The above simplification cannot be carried over to multiple declarations. With this
proviso, the module of Figure 5.8 can be modified as shown in Figure 5.9. In the

modules of Figures 5.8 and 5.9, a, b, c, and d are declared as input and g as

output. As was explained in Section 4.2, these would be taken as nets if thereare

no separate declarations concerning their types. However, the intermediate

quantities – e, f, and g1– should be declared as wire. Synthesized version of the

A-O-I circuit is shown in Figure 5.10.

module aoi2(g,a,b,c,d); output g;
input a,b,c,d; wire e,f,g1,g;
assign e = a && b,f = c && d, g1 = e||f, g=~g1; endmodule

Figure 5.8 A compact description of the AOI module at the data flow level.

module aoi3(g,a,b,c,d); output g;
input a,b,c,d; wire g;
wire e = a && b; wire f = c && d; wire g1 = e||f; assign g = ~g1; endmodule

Figure 5.9 Alternate design module to realize the A-O-I gate in Figure 5.4.

Figure 5.10 Synthesized circuit of the A-O-I gate module of Figure 5.9.

5.2.2 Continuous Assignments and Strengths

Geethanjali College of Engg.&Tech. Department of ECE IV B.Tech
II-Sem

DIGITAL DESIGN THROUGH VERILOG HDL Page 119

A net to which a continuous assignment is being made can be assigned strengths for
its logic levels. The procedure is akin to the strength allocation to the outputs of
primitives. The AOI gate of Figure 5.9 is modified with strength allocations to the
output and is shown in Figure 5.11. The assignment to g can be combined with the
wire declaration into a single statement as

wire (pull1, strong0)g = ~g1;
As mentioned earlier, one can have only one assignment in the statement here. In a bigger

design, g in Figure 5.11 can be assigned to other expressions or primitives also. Any resulting

contention in the output values will be resolved on the lines discussed in Chapter 4.

module aoi4 (g, a, b, c, d); output g;

input a, b, c, d; wire g;

wire e = a &&b; wire f = c &&d; wire g1 = e || f;

assign (pull1, strong0)g = ~g1; endmodule
Figure 5.11 The module of Figure 5.9 modified with strength allocation to the output.

5.3 DELAYS AND CONTINUOUS ASSIGNMENTS

Delays can be incorporated at the data flow level in different ways [Ciletti]. Consider
the combination of statements in Figure 5.12. The assignment takes effect with a

time delay of 2 time steps. If a or b changes in value, the program waits for 2 time

steps, computes the value of c based on the values of a and b at the time of

computation, and assigns it to c. In the interim period, a or b may change further,

but c changes and takes the new value only 2 time steps after the change in a or b

initiates it. Typical waveforms for a, b, and c are shown in Figure 5.13. Note that

the changes in a and b of duration less than 2 time steps are ignored vis-à-vis

assignment to the net c. The following may be noted with respect to the waveforms:

a changes at 0 ns, 2 ns, 5 ns, 8 ns, 9 ns, 12 ns and 13 ns; b changes at 0 ns, 2
ns, 5 ns, 8 ns and 13 ns. All these trigger changes to c.

In every case change to c comes into effect with a time delay of 2 time steps –
that is, at the 2nd, 4th, 7th, 8th, 10th, 11th, 14th and 15th ns, respectively.

Whenever c changes, its new value is decided by the values of a and b at that instant of

time. In effect, c changes at 2nd, 4th and 7th ns only.

wire c, a, b;

assign #2 c = a & b;

Figure 5.12 Illustration of combining delays with assignments.

Geethanjali College of Engg.&Tech. Department of ECE IV B.Tech
II-Sem

DIGITAL DESIGN THROUGH VERILOG HDL Page 120

a

b

c

0 5 10 15 ns

Figure 5.13 Waveforms of signals a, b, and c for the design segment of Figure 5.12.

9***
***-/-

41+

+6 l’\

The program segment in Figure 5.14 also gives the same output as shown in Figure 5.13. If the

time delay is in the net and not in the assignment proper, its effect is not any different. Consider the

program segment in Figure 5.15. Here the changes in the values of d are computed immediately

following those in a and b. The assignment takes effect immediately. The delay in the net c causes a

delay of 2 time steps in the assignment to c. Such a delay is not present for d. Typical waveforms for

the program segment are shown in Figure 5.15. Note the following:

a changes at 2 ns, 5 ns, 8 ns, 9 ns, 12 ns and 13 ns; b changes at 2 ns, 5 ns, 8
ns and 13 ns. All these trigger changes to c and d also.

In every case, change to c comes into effect with a time delay of 2 time steps

 that is, in effect, c changes at 2nd, 4th and 7th ns only.

Whenever c changes, its new value is decided by the values of a and b at that
instant of time.

In every case, changes to d come into effect immediately.

wire a, b;

wire #2 c = a & b;

Figure 5.14 Alternate description for the program segment of Figure 5.10.

wire a, b, d;
wire #2 c;

Geethanjali College of Engg.&Tech. Department of ECE IV B.Tech
II-Sem

DIGITAL DESIGN THROUGH VERILOG HDL Page 121

assign c = a & b; assign d = a & b;

Figure 5.15 Illustration of combining delays with assignments.

a

b

c

d

0 5 10 15 ns

Figure 5.15 Waveforms of Signalsa,b,c,anddfor the design segment of Figure 5.15.

5.4 ASSIGNMENT TO VECTORS

The continuous assignments are equally applicable to vectors. A single statement
can describe operations involving vectors wherever possible. This is illustrated in
the adder module in Figure 5.17, which adds two 8-bit numbers. Here it is assumed
that the sum is also of 8 bits. However to account for the possibility of a carry bit
being generated in the course of the addition process, it is desirable to increase the

vector size of c by one bit.
5.4.1 Concatenation of Vectors

One can concatenate vectors, scalars, and part vectors to form other vectors. The
concatenated vector is enclosed within braces. Commas separate the components –

scalars, vectors, and part vectors. If a and b are 8- and 4-bit wide vectors,

respectively and c is a scalar

{a, b, c}
stands for a concatenated vector of 13 bits width. The vector components are

formed in the order shown – c is the least significant bit and a[7] the most
significant bit and the other bits are in between in the order specified. The
concatenation can be with selected segments of vectors also. For example,

{a(7:4), b(2:0)}
represents a 7-bit vector formed by combining the 4 most significant bits of vector

a with the 3 least significant bits of vector b. The size of each operand within
thebraces has to be specified fully to form the concatenated vector. Hence unsized
constant numbers cannot be used as operands here.

Example 5.1 Eight-Bit Adder
Figure 5.18 shows the design description of an 8-bit adder, where the output vector

Geethanjali College of Engg.&Tech. Department of ECE IV B.Tech
II-Sem

DIGITAL DESIGN THROUGH VERILOG HDL Page 122

is formed directly by concatenation. The adder takes a carry input and gives out a
carry output. The adder module here can form the “seed” adder block in a multi-
byte adder chain.

module add_8(a,b,c); input[7:0]a,b; output[7:0]c; assign c = a + b ; endmodule

Figure 5.17 An adder module at data flow level where the nets are vectors.

Geethanjali College of Engg.&Tech. Department of ECE IV
B.Tech II-Sem

DIGITAL DESIGN THROUGH VERILOG HDL Page 123

module add_8_c(c,cco,a,b,cci); input[7:0]a,b;
output[7:0]c; input cci; output cco;
assign {cco,c} = (a + b + cci); endmodule

Figure 5.18 A complete 8-bit adder module at data flow level.

When it is necessary to replicate vectors, scalars, etc., to form other vectors, the same can be

arrived at in a compact manner using the repetition multiplier again through concatenation. Thus,

{2{p}}
represents the concatenated vector
{p, p}
and
{2{p}, q}
represents the concatenated vector
{p, p, q}.
The two statements
assign GND=supply0;p={8{GND}};

together ground the 8 bits of the vector p.
Concatenation operation can be nested to form bigger vectors when component combinations

are repeated. For example,

{a, 3 {2{b , c}, d}}
is equivalent to the vector
{a, b, c, b, c, d, b, c, b, c, d, b, c, b, c, d }

5.5 OPERATORS

A set of operators is available in Verilog. The operator symbols are similar to those
in C language [Gottfried]. With these operators we can carry out specified
operations on the operands and assign the results to a net or a vector set of nets as
the case may be. A few such operands have already been used in the examples so
far. We discuss here the different operators, their types, and the operations carried
out by each. Subsequently the use of operators is illustrated through a set of
examples.

Geethanjali College of Engg.&Tech. Department of ECE IV
B.Tech II-Sem

DIGITAL DESIGN THROUGH VERILOG HDL Page 124

5.5.1 Unary Operators

Unary operators do an operation on a single operand and assign the result to the
specified net. The unary operators in Verilog are given in Table 5.1. All unary
operators get precedence over binary and ternary operators. The operators “+” and
“–“ preceding an integer or a real number change its sign. These are also unary
operators, though not separately listed in Table 5.1.

5.5.2 Binary Operators

Most operators available are of the binary type. A binary operator takes on two
operands; the operator comes in between the two operands in the assignment. The
binary operators are grouped into type categories and discussed separately. The
following are to be noted:

The arithmetic operators treat both the operands as numbers and return the
result as a number.

All net and reg operand values are treated as unsigned numbers. Real and integer operands

may be signed quantities.

If either of the operand values has a zero value, the entire result has a zero value (?).

The result of any arithmetic operation — with the “+” or “–” or with any of the other arithmetic

operators discussed later — will have an x value if any of the operand bits has an x or a z value.

5.5.2.1 Arithmetic Operators

The arithmetic operators of the binary type are given in Table 5.2. The modulus
operand is similar to that in C language – It provides the remainder of the division

Table 5.1 Unary operators and their symbols

Operator type Symbol Remarks

Logical negation ! Only for scalars
Bit-wise negation ~ For scalars and vectors
Reduction AND & For vectors – yields a single bit output
Reduction NAND ~&

Reduction OR |

Reduction NOR ~|

Reduction XOR ^

Reduction XNOR ~^ or ^~

 Table 5.2 Arithmetic operators and their symbols

 Operand type Symbol Remarks

 Multiplication *

Geethanjali College of Engg.&Tech. Department of ECE IV
B.Tech II-Sem

DIGITAL DESIGN THROUGH VERILOG HDL Page 125

 Division / The result is x if the denominator is zero

 Modulus %

 Addition +

 Subtraction –

of two numbers. The module in Figure 5.17 is an example of the illustration of the
use of the arithmetic binary operator “+” (for addition). Other arithmetic operators
are also used in a similar manner.

Observations:
In integer division the fractional part of the result is truncated and ignored.
If any bit of an operand is x or z in an arithmetic operation, the result takes

the x value.

If the first operand of a modulus operator is negative, the result is also a negative number.

Depending on the type of definition of a number, a modulus operation can lead to
different results. Typical examples are given in Table 5.3.

5.5.2.2 Logical Operators

There are two logical operators involving two operands. The operands concerned
can be variables or expressions involving variables. In both cases the result of the
operation is a single bit of value 1 (true) or 0 (false). If a bit in one of the operands
is x or z, the result of evaluation of the expression has an x value. The operator

details are shown in Table 5.4. The modules in Figure 5.8 and Figure 5.9 are
examples of the illustration of the use of logical binary operators.

5.5.2.3 Relational Operators

There are four relational operators; their details are shown in Table 5.5. A relational
operator treats both the operands as binary numbers and compares them. The result
is a 1 (true) bit or a 0 (false) bit. If a bit in either operand is x or z, the result has x

(unknown) value. The operands can be variables or expressions involving variables.
Operands of net or reg type are treated as unsigned numbers. Real and integers

can be positive or negative (i.e., signed) numbers.

 Table 5.3 Typical modulus operations and their results

 Expressions involving Result of the
Remarks

 modulus operator operation

15 % 5 0 Results are obvious

14 % 5 4

 4’hf % 5 0 The numbers 4’hf and 4’he are in hex format

 4’he % 5 4 with decimal values of 15 and 14, respectively.

 But the denominator 5 is in decimal form.

 5’o15 % 5 3 5’o15 is an octal number with a decimal value

 of 13.

 –4 % 3 –1

 4 % –3 Illegal form

Geethanjali College of Engg.&Tech. Department of ECE IV
B.Tech II-Sem

DIGITAL DESIGN THROUGH VERILOG HDL Page 126

 Table 5.4 Binary logical operators and their symbols

 Operator type Symbol Possible output value

 AND &&
Single-bit output

OR

||

 Table 5.5 Relational operators and their symbols

 Operator type Symbol Possible output value

 Greater than > Single-bit output

 Less than <

 Greater than or equal to >=

 Less than or equal to <=

5.5.2.4 Equality Operators

The equality operator makes a bit-by-bit comparison of the two operands and
produces a result bit. The result bit is a 1 (true) if the operand condition is satisfied;
otherwise it is 0 (false). The operands can be variables or expressions involving
variables. If the operands are of unequal length, the shorter one is zero filled to
match the larger operand. The operators in this category are only of two types –
those to test the equality and those to test inequality. The four operators in this
category are given in Table 5.5.

5.5.2.5 Bit-wise Logical Operators

The operator does a specified bit-by-bit operation on the two operands and
produces a set of result bits. The result is (bit-wise) as wide as the wider operand.

 Table 5.5 Equality operators and their symbols

Operand

 Possible

 Description of operand logical value

 symbol

 of result

== (The symbol comprises two consecutive equal signs.) If the

 two operands are equal bit by bit, the result is 1 (true); else the 0, 1, or x

 result is 0 (false). If either operand has a x or z bit, the result is

 x.

!= (The symbol comprises of an exclamation mark followed by an

 equal sign.) A bit-by-bit comparison of the two operands is

 made. The result is a 1 if there is a mismatch for at least one bit 0, 1, or x

 position.

=== (The symbol comprises of three consecutive equal signs.) The

 operand bits can be 0, 1, x, or z. If the two operands match

 on a bit by bit basis, the result is a 1 (true) bit; else it is 0 (false). 0 or 1

 Note that the result is never x here.

!== (The symbol comprises an exclamation mark followed by 2

 consecutive equal signs). The operand bits can be 0, 1, x, or z.

 If the two operands do not match on a bit by bit basis, the result
0 or 1

 is a 1 (true) bit; else it is 0 (false). Note that the result is never

Geethanjali College of Engg.&Tech. Department of ECE IV
B.Tech II-Sem

DIGITAL DESIGN THROUGH VERILOG HDL Page 127

 x here.

If the width of one of the operands is less than that of the other, it is bit-extended
by filling zero bits and the widths are matched. Subsequently, the specified
operation is carried out. If one of the operands has an x or z bit in it, the
corresponding result bit is x. Either operand can be a single variable or an
expression involving variables. Table 5.7 gives the four operators of this category.

5.5.2.6 Operator Truth Table

The truth tables for different types of bit-wise operators are given in Table 5.8.
Note that an z input is treated as an x value (Compare these with their counterparts
for respective gate primitives in Chapter 4.)

Table 5.7 Bit-wise logical operators and their symbols

 Operator type Symbol Possible result

 AND &

 OR | 0, 1, or x

XOR ^

 XNOR ~^ or ^~

Geethanjali College of Engg.&Tech. Department of ECE IV B.Tech
II-Sem

DIGITAL DESIGN THROUGH VERILOG HDL Page 128

Table 5.8 Truth tables for bit-wise operators

 AND OR

 Input 2 Input 2

 0 1 X 0 1 X

 1

0

0

0

0
 1

0 0

1

X

In
p
u

t

In
p
u

t

 1 1 0 X 1 1 1 1

 X 0 X X X X 1 X

 XOR XNOR

 Input 2 Input 2

 1 0 1 X 1 0 1 X

In
p

u

t

 1 1 0 X
In

p
u

t
 0 1 1 X

X

X

X

X

X

X

X

X

 Negation

 Input 0 1 X

 Output 1 0 X

5.5.2.7 Shift Operators

Table 5.9 shows the two operators of this category. The << operator executes left
shift operation, while the >> operator executes the right shift operation. In either
case the operand specified on the left is shifted by the number of bits specified on
the right. The shifting is done irrespective of whether the bits are 0, 1, x, or z. The

bits shifted out are lost. The vacated positions created as a result of the shifting are
filled with zeroes. If the right operand is x or z, the result has an x value. If the

right operand is negative, the left operand remains unchanged.

5.5.3 Ternary Operator

Verilog has only one ternary operator – the conditional operator. It checks a
condition and does a branching. It is a versatile and powerful operator. It enhances
the potential of design description substantially (as can be seen through the
examples below). The general form is

A?b:c

The conditional operation is made up of two operators – “?” and “:” – and three
operands. The two operands separate the three operators in the order shown. The
operational sequence of the operation is as follows:

Geethanjali College of Engg.&Tech. Department of ECE IV B.Tech
II-Sem

DIGITAL DESIGN THROUGH VERILOG HDL Page 129

 Table 5.9 Shift-type operators and their symbols

Operand

 Typical
Operation

 usage

>> A >> b The set of bits representing A are shifted right repeatedly b times.

<< A<< b The set of bits representing A are shifted left repeatedly b times.

“A” is evaluated first.

If A is true, b is evaluated. If A is false, c is evaluated.

If A evaluates to an ambiguous result, both b and c are evaluated. Then they are
combined on a bit-by-bit basis to form the resultant bit stream. The result bit can
have the following three possible values:

0 if the corresponding bits of b and c are 0. 1 if the corresponding bits of b and c are 1. X

otherwise.

As an example, consider the assignment statement
assign y = w ? x : z;

where w, x, y and z are binary bits. If the bit w is true (1), y is assigned the value of

x: otherwise – that is, if w is false (0) – y is assigned the value of z. The assignment

statement here multiplexes x and z onto y; w is the control signal here. Consider the
assignment

assign flag= (adr1 == adr2)?1’b1 : 1’b0;

Here adr1 and adr2 are two multibit vectors representing two addresses. If the two

are identical, the flag bit is set to zero; else it is reset.
assgn zero_flag = (|byte)? 0:1;

All the bits of the byte are ORed together here. The zero_flag is set if the result is
zero.

assign c = s ? a: b; //The netcis connected toaifs=1; else it is connected tob

The statement realizes a 2 to 1 mux. b and c have to be scalars or vectors of the
same width. The assignment can be expanded to realize larger muxes.

The conditional operator can be nested [see Figure 5.19]. Nesting gives rise to a variety of uses

of the operator. As an example, consider the formation of an ALU. ALU can be defined in a compact

manner using the ternary operator.

assign d = (f==add)?(a+b): ((f==subtract)?(a-b): ((f==compl)?~a: ~b));

assign o = (s == 2’b00) ? I0 : ((s == 2’b01) ? I1 :

((s == 2’b10) ? I2 : I3));

Innermost conditional operation

 Outer conditional operation

Geethanjali College of Engg.&Tech. Department of ECE IV B.Tech
II-Sem

DIGITAL DESIGN THROUGH VERILOG HDL Page 130

 Outermost conditional operation

Figure 5.19 Illustration of nested conditional operations.

In the example here, f is taken as a control word. If it is equal to the number add, d

is to be equal to the sum of a and b. If f is equal to the number subtract, d is tobe

equal to the difference between a and b. If it is equal to the number compl, d is to

be the complement of a. Otherwise (i.e., f = 3) d is taken as the complement of b.
As another example consider a mux; the assignment statement in Figure
5.18represents a 4-to-1 mux formed with a nested set of ternary operators. The
construct in the figure can be judiciously used to form muxes of larger sizes.

Example 5.2 ALU
Figure 5.20 shows an ALU module. It is built around a single executable statement
present as a continuous assignment. A test bench for the ALU is also shown in the
figure. The synthesized circuit is shown in Figure 5.21. Results of running the test
bench are shown in Figure 5.22. Some of the combinational circuit operations
required are realized inside the “modgen” blocks of the FPGA used. The nature of
the ALU description in the module decides the translation into circuit. Contrast this
with the ALU considered at the gate level of design in Section 5.7 where each
functional block is instantiated separately and the selected set of outputs steered to
the final output. Each such instantiated module translates into a separate circuit
block. Their outputs are mux’ed into the final output vector. There is a one-to-one
correspondence between the elements of the design description and their respective
realizations.
module alu_df1 (d, co, a, b, f,cci); //a SIMPLE ALU FOR ILLUSTRATION
PURPOSES output [3:0] d;
output co; wire[3:0]d;wire co; input cci;
input [3 : 0] a, b;
input [1 : 0] f;//f is a two-bit function select input; assign
{co,d}=(f==2’b00)?(a+b+cci):((f==2’b01)?(a-b)

:((f==2’b10)? {1’bz,a^b}:{1’bz,~a})); /*co is the carry bit in case of addition;it is the borrow bit in

case of subtraction. In the other two cases, co is not required. Hence it is assigned z value.*/

endmodule
module tst_aludf1; //test-bench reg [3:0]a,b;
reg[1:0] f; reg cci; wire[3:0]d; wire co;
alu_df1 aa(d,co,a,b,f,cci); initial
begin

cci= 1’b0; f = 2’b00; a = 4’b0;

b = 4’h0;

end always

begin

Geethanjali College of Engg.&Tech. Department of ECE IV B.Tech
II-Sem

DIGITAL DESIGN THROUGH VERILOG HDL Page 131

#2 cci = 1’b0;f = 2’b00;a = 4’h1;b = 4’h0; #2 cci = 1’b1;f = 2’b00;a = 4’h8;b = 4’hf; #2 cci =

1’b1;f = 2’b01;a = 4’h2;b = 4’h1; #2 cci = 1’b0;f = 2’b01;a = 4’h3;b = 4’h7; #2 cci = 1’b1;f = 2’b10;a

= 4’h3;b = 4’h3; #2 cci = 1’b1;f = 2’b11;a = 4’hf;b = 4’hc; end

initial $monitor($time, “ cci = %b , a= %b ,b = %b , f = %b ,d =%b ,co= %b “,cci
,a,b,f,d,co);
initial #30 $stop; endmodule

Figure 5.20 A 4-bit 4-function ALU and a test bench for the same.

Figure 5.21 Synthesized circuit of the ALU in Example 5.18.

output listing

0 cci = 0 , a= 0000 ,b = 0000 ,f = 00 ,d =0000 ,co= 0

2 cci = 0 , a= 0001 ,b = 0000 ,f = 00 ,d =0001 ,co= 0

4 cci = 1 , a= 1000 ,b = 1111 ,f = 00 ,d =1000 ,co= 1

5 cci = 1 , a= 0010 ,b = 0001 ,f = 01 ,d =0001 ,co= 0

8 cci = 0 , a= 0011 ,b = 0111 ,f = 01 ,d =1100 ,co= 1 #10 cci = 1 , a= 0011 ,b = 0011 ,f = 10 ,d

=0000 ,co= z #12 cci = 1 , a= 1111 ,b = 1100 ,f = 11 ,d =0000 ,co= z #14 cci = 0 , a= 0001 ,b =

0000 ,f = 00 ,d =0001 ,co= 0 #15 cci = 1 , a= 1000 ,b = 1111 ,f = 00 ,d =1000 ,co= 1 #18 cci = 1 ,

a= 0010 ,b = 0001 ,f = 01 ,d =0001 ,co= 0 #20 cci = 0 , a= 0011 ,b = 0111 ,f = 01 ,d =1100 ,co=

1 #22 cci = 1 , a= 0011 ,b = 0011 ,f = 10 ,d =0000 ,co= z #24 cci = 1 , a= 1111 ,b = 1100 ,f = 11

,d =0000 ,co= z #25 cci = 0 , a= 0001 ,b = 0000 ,f = 00 ,d =0001 ,co= 0 #28 cci = 1 , a= 1000 ,b =

1111 ,f = 00 ,d =1000 ,co= 1

Figure 5.22 Results of running the test bench for the ALU module in Figure 5.20.

Geethanjali College of Engg.&Tech. Department of ECE IV
B.Tech II-Sem

DIGITAL DESIGN THROUGH VERILOG HDL Page 132

6
FUNCTIONS, TASKS, AND USER-DEFINED PRIMITIVES

6.1 INTRODUCTIUON

Bigger designs are better arranged in small functional blocks; it facilitates debugging
and any reorganization. Thus a module can have well-defined sub-modules inside,
treated as separate entities. Functions and Tasks are such entities inside modules.
They play three broad roles:

A well-defined structure with a separate identity. They can hide some variables.

They can be repeatedly invoked within the module.
User-defined primitive (UDP) provides an alternative form of a submodule; it can realize specific

outputs. The UDP has a specific format. It can be defined by the user and used wherever necessary.

The fact that the UDP has a specific format allows a straightforward definition – often at the expense

of flexibility.

function declaration

The function can return a real or integer type data;it can be a vector with a specified size.

The default value is a binary bit.

The name assigned to the function; the
 function is instantiated with this name. function type_or_size function_name ;

input declarations
local variable declarations
procedural assignment satements
endfunction

Geethanjali College of Engg.&Tech. Department of ECE IV
B.Tech II-Sem

DIGITAL DESIGN THROUGH VERILOG HDL Page 133

All inputs to the function and their sizes are declared here. A function must have at least one

input

Variables local to the function are declared. They are not available

outside the function

Represent the function body. It may be a single procedural assignment or a collection of

them within a begin-end construct

Signifies termination of a function definition

Geethanjali College of Engg.&Tech. Department of ECE IV B.Tech II-
Sem

DIGITAL DESIGN THROUGH VERILOG HDL Page 134

Figure 6.1 Structure for function definition.

6.2 FUNCTION

A function is like a subroutine or a procedure in a program. It is defined separately
within a module and can be called whenever necessary. When a function is declared
with a function name, the system allocates a register for it. The name of the register is
that of the function; and its type (as well as size) is also that of the function. When a
function is called, the system executes the functional activity and generates the
output. Eventually the output is assigned to the register identified for the function.
The quantity returned by the function can be used as an operand in an assignment or
in an expression. The structure of a function definition is shown in Figure 6.1. The
significance of each of the quantities as well as the rules of using them is also
explained in the figure. The use of functions is brought out through a set of
examples.

Example 6.1

The function odd-parity is defined within the module parity-check in Figure 6.2. It generates
a parity bit. The parity bit is 1 if the number of one-bits in the byte is odd. Otherwise it is zero.

The module has an 8-bit vector input and a flag input – en. It has an output chk. Whenever

the flag goes high, the function odd-parity iscalled. It returns the parity bit value and assigns it

to chk in the module. parity-check is an example with a single-bit output-type function in it.
The function hasno local variables in it.

module parity_chk(a,en,chk); input[7:0]a;
input en; output chk; wire[7:0] a; reg chk;
always @(posedge en) begin

chk=pb(a);

$display(“t=%0d, a = %b, en = %0b, pb = %0b “,$time,a,en,chk);

end
function pb; input[7:0]a; pb=^a; endfunction

endmodule module tst_pchk; reg [7:0]a;
reg en; wire chk; integer i;
parity_chk pchk(a,en,chk); initial #0 en=1’b0;
always #2 en = ~en; initial
begin

#1 a=8’h00; for(i=0;i<8;i=i+1) begin

#4 a=a+3’o5;

end

end
initial #40 $stop; endmodule

Geethanjali College of Engg.&Tech. Department of ECE IV B.Tech II-
Sem

DIGITAL DESIGN THROUGH VERILOG HDL Page 135

Figure 6.2 A module for parity generation through a function.

t=2, a = 00000000, en = 1, pb = 0

t=5, a = 00000110, en = 1, pb = 0

t=10, a = 00001100, en = 1, pb = 0

t=14, a = 00010010, en = 1, pb = 0

t=18, a = 00011000, en = 1, pb = 0

t=22, a = 00011110, en = 1, pb = 0

t=25, a = 00100100, en = 1, pb = 0

t=30, a = 00101010, en = 1, pb = 1

t=34, a = 00110000, en = 1, pb = 0

t=38, a = 00110000, en = 1, pb = 0

Figure 6.3 Simulation results of the test bench in Figure 6.2

Example 6.2
Figure 6.4 shows another module for parity generation. The module has a function to
count the number of one-bits in the input byte. In the module the parity bit is
decided by mod-2 division of the number returned by the function. The function has
an integer declared and used within it. (In contrast, in the last example the parity bit
was generated directly within the function defined.)

module parity(p,a,En); input[7:0]a;
input En; output p; reg p;
always @(posedge En) begin

p=n1(a)%2; //Use n1 & generate the parity bit. $display(“t=%0d, a = %b, en = %b, p = %b

“,$time,a,en,p);

end

function integer n1; //A function to count the number of 1 bits in a byte input[7:0]a;
integer i;

for(i=0;i!=8;i=i+1) begin

if(i==0) n1=0; if(a[i]) n1=n1+1;

end endfunction endmodule

Figure 6.4 A module to generate a parity bit: The parity bit is generated by counting
thenumber of one-bits in a function and doing a mod-2 division.

Example 6.3
In the module of Figure 6.5 the number of one-bits is decided by shifting out the bits

Geethanjali College of Engg.&Tech. Department of ECE IV B.Tech II-
Sem

DIGITAL DESIGN THROUGH VERILOG HDL Page 136

of the input vector and counting the ones in them. Otherwise the module is similar to
the one in Figure 6.4. The module (as well as the previous ones) can be easily
extended to generate the parity bit for wider binary streams.

module parity_a(p,a,En); input[7:0]a;
input En; output p; reg p;
always @(posedge En) begin

p=nn(a)%2;

$display(“t=%0d, a = %b, En = %b, p = %b “,$time,a,En,p);

end
function integer nn; input[7:0]a; integer i;
begin

for(i=0;i!=8;i=i+1) begin

if(i==0) nn=0; if(a[i]) nn=nn+1; a=a>>1;

end

end endfunction endmodule
Figure 6.5 Another module to generate a parity bit similar to that in Figure 6.4.

Example 6.4
Figure 6.5 shows an adder module to add two 2-bit numbers. The module has two
functions defined in it – a half-adder and a full-adder. Further, one can see that the
full-adder function itself calls the half-adder function within it. The module calls the
full-adder function repeatedly within itself. A test bench for the adder is also included
in the figure. The simulation results are shown in Figure 6.7.

module adderfun(r,p,q,En);
input[1:0] p,q; input En; output [2:0] r; reg[2:0]r,c; integer i; always@(posedge En)
begin

for(i=0;i<2;i=i+1) begin

if(i==0) c[i]=1’b0; {c[i+1’b1],r[i]}=fa(p[i],q[i],c[i]);

end

r[2]=c[2];

$display(“t=%0d, En = %b, p = %b, q = %b, r = %b “,$time ,En,p,q,r);

end
function[1:0] ha; input a,b; ha={a&b,a^b}; endfunction
function [1:0]fa;
input a,b,c; reg[1:0]a1,a2,aa2; begin

Geethanjali College of Engg.&Tech. Department of ECE IV B.Tech II-
Sem

DIGITAL DESIGN THROUGH VERILOG HDL Page 137

a1=ha(a,b);

aa2=ha(a1[0],c); a2[1] = (aa2[1]|a1[1]); a2[0] = aa2[0];

fa=a2;

end endfunction endmodule
module tst_adder_fun; //testbench; reg [1:0] p,q; reg En; wire [2:0] r; adderfun
aa(r,p,q,En);
always #2 En=~En; initial begin

En=1’b0; p=2’b01;q=2’b00; #5 p=2’b10;q=2’b10;

#4 p=2’b10;q=2’b11; #4 p=2’b11;q=2’b11; #4 p=2’b01;q=2’b01;

end initial #30 $stop; endmodule

Figure 6.5 A module to illustrate a function calling another one; a test bench is
alsoincluded in the figure.

t=2, En = 1, p = 01, q = 00, r = 001

t=5, En = 1, p = 10, q = 10, r = 100

t=10, En = 1, p = 10, q = 11, r = 101

t=14, En = 1, p = 11, q = 11, r = 110

t=18, En = 1, p = 01, q = 01, r = 010

t=22, En = 1, p = 01, q = 01, r = 010

t=25, En = 1, p = 01, q = 01, r = 010

Figure 6.7 Results of running the test bench in Figure 6.5.

Example 6.5
A module to add two 32-bit numbers is shown in Figure 6.8. It is essentially a scaled-

up version of the one in Figure 6.5. The addition is initiated by the En input going
high; it is carried out in one time step. A test bench is also included in the figure. The
simulation results for a specific set of input number combinations are shown in
Figure 6.6.
module add32(r,p,q,En);
input[31:0] p,q; input En; output [32:0] r; reg[32:0]r,c; integer i; always@(posedge En)
begin

for(i=0;i<32;i=i+1) begin

if(i==0) c[i]=1’b0; {c[i+1’b1],r[i]}=fa(p[i],q[i],c[i]); end

r[32]=c[32];

Geethanjali College of Engg.&Tech. Department of ECE IV B.Tech II-
Sem

DIGITAL DESIGN THROUGH VERILOG HDL Page 138

$display(“t=%0d, En = %b, p = %0h, q = %0h, r = %0h “,$time, En,p,q,r);

end

function[1:0] ha; input a,b; ha={a&b,a^b}; endfunction
function [1:0]fa;
input a,b,c; reg[1:0]a1,a2,aa2; begin

a1=ha(a,b);

aa2=ha(a1[0],c);

a2[1] = (aa2[1]|a1[1]);

a2[0] = aa2[0];

fa=a2;

end

endfunction

endmodule
module tst_add32; //testbench;
reg [31:0] p,q; reg En; wire [32:0] r;

add32 aa(r,p,q,En);

always #2 En=~En;

initial begin
#0 En = 1’b0;

#3 p = 32’h1234; q = 32’h4321;

#4 p = 32’h12345578; q = 32’h68755432; #4 p = 32’habcdef12; q = 32’hbbccddee; #4 p =

32’hfedcba36; q = 32’h13576bdf; #4 p = 32’h6875abcd; q = 32’hfedc8755; #4 p = 32’hf0e0d0c0; q

= 32’h11020304;

end initial #30 $stop; endmodule

Figure 6.8 A scaled-up version of the 2-bit adder in Figure 6.5 to add 32-bit numbers.

t=2, En = 1, p = x, q = x, r = x

t=5, En = 1, p = 1234, q = 4321, r = 5555

t=10, En = 1, p = 12345578, q = 68755432, r = aaaaaaaa

t=14, En = 1, p = abcdef12, q = bbccddee, r = 1576acd00

t=18, En = 1, p = fedcba36, q = 13576bdf, r = 112345518

t=22, En = 1, p = 6875abcd, q = fedc8755, r = 167533332

t=25, En = 1, p = f0e0d0c0, q = 11020304, r = 101e2d3c4

Geethanjali College of Engg.&Tech. Department of ECE IV B.Tech II-
Sem

DIGITAL DESIGN THROUGH VERILOG HDL Page 139

Figure 6.6 Results of running the test bench in Figure 6.8.

Example 6.5
A variant of the adder in Example 6.4 is shown in Figure 6.10: After the enable input

en goes high, the full-adder function is called repeatedly in successive clock pulses
and bit-wise addition is carried out. The figure also includes a test bench. As can be
seen from the simulation results in Figure 6.11, each addition is spread over two clock
periods.
module adderfunb(clk,r,p,q,En);
input[1:0] p,q; input En,clk; output [2:0] r; reg[2:0]r,c; integer i; always@(posedge En)
begin

for(i=0;i<2;i=i+1) begin @(posedge clk) if(i==0) c[i]=1’b0;

{c[i+1’b1],r[i]}=fa(p[i],q[i],c[i]); end

r[2]=c[2];

$display(“ t=%0d, clk = %b, En = %b, p = %b, q = %b, r = %b “,$time,clk,En,p,q,r);

end

function[1:0] ha; input a,b; ha={a&b,a^b}; endfunction
function [1:0]fa;
input a,b,c; reg[1:0]a1,a2,aa2; begin

a1=ha(a,b);

aa2=ha(a1[0],c); a2[1] = (aa2[1]|a1[1]); a2[0]=aa2[0];

fa=a2;

end endfunction endmodule
module tst_adder_funb();
reg [1:0] p,q; reg En,clk; wire [2:0] r; adderfunb bb(clk,r,p,q,En);
always #2 clk=~clk; initial begin

clk=1’b0; En=1’b0; p=2’b01; q=2’b00; #1 En=1’b1; #5 En=1’b0; p=2’b01; q=2’b10; #1 En=1’b1;

#7 En=1’b0; p=2’b01; q=2’b01; #1 En=1’b1; #7 En=1’b0; p=2’b10; q=2’b01; #1 En=1’b1; #7

En=1’b0; p=2’b10; q=2’b10; #1 En=1’b1; #7 En=1’b0; p=2’b10; q=2’b11; #1 En=1’b1; #7 En=1’b0;

p=2’b11; q=2’b11; #1 En=1’b1; #7 En=1’b0;

end initial #50 $stop; endmodule

Figure 6.10 A variant of the 2-bit adder in Figure 6.5; bit-wise addition is carried out
insuccessive clock pulses.

Geethanjali College of Engg.&Tech. Department of ECE IV B.Tech II-Sem

DIGITAL DESIGN THROUGH VERILOG HDL Page 140

t=5, clk = 1, En = 1, p = 01, q = 00, r = 001

t=14, clk = 1, En = 1, p = 01, q = 10, r = 011

t=22, clk = 1, En = 1, p = 01, q = 01, r = 010

t=30, clk = 1, En = 1, p = 10, q = 01, r = 011

t=38, clk = 1, En = 1, p = 10, q = 10, r = 100

t=45, clk = 1, En = 1, p = 10, q = 11, r = 101

t=54, clk = 1, En = 1, p = 11, q = 11, r = 110

Figure 6.11 Simulation results of the test bench for the adder module in Figure 6.10.

Example 6.7
A module to add 32-bit numbers is shown in Figure 6.12. It is a scaled-up version of

that in the last example. The addition commences after the enable bit En goes high.
Starting with the LSB, one bit is added at every succeeding clock pulse. Addition is
completed in 32 clock pulses. The simulation results with a set of 32-bit numbers is
shown in Figure 6.13.
module add32_a(clk,r,p,q,En);
input[31:0] p,q;input En,clk; output [32:0] r; reg[32:0]r,c; integer i; always@(posedge
En) begin

for(i=0;i<32;i=i+1) begin

@(posedge clk) begin

if(i==0) c[i]=1’b0; {c[i+1’b1],r[i]}=fa(p[i],q[i],c[i]); end

end r[32]=c[32];

$display(“t=%0d, En = %b, p = %0h, q = %0h, r = %0h “,$time,En,p,q,r); end

function[1:0] ha;
input a,b; ha={a&b,a^b}; endfunction
function [1:0]fa;
input a,b,c; reg[1:0]a1,a2,aa2; begin

a1 = ha(a,b);
aa2 = ha(a1[0],c);
a2[1] = (aa2[1]|a1[1]);

a2[0] = aa2[0]; fa = a2;

end endfunction endmodule
module tst_add32a();
reg [31:0] p,q; reg En,clk; wire [32:0] r; add32_a bb(clk,r,p,q,En);
always #1 clk=~clk; initial begin

clk=1’b0;En=1’b0;p=32’h1234;q=32’h4321;

Geethanjali College of Engg.&Tech. Department of ECE IV B.Tech II-Sem

DIGITAL DESIGN THROUGH VERILOG HDL Page 141

#1 En=1’b1;#100 En=1’b0;p=32’h12345578;q=32’h68755432; #1 En=1’b1;#66
En=1’b0;p=32’habcdef12;q=32’hbbccddee; #1 En=1’b1;#66
En=1’b0;p=32’hfedcba36;q=32’h13576bdf; #1 En=1’b1;#66
En=1’b0;p=32’h6875abcd;q=32’hfedc8755; #1 En=1’b1;#66
En=1’b0;p=32’hf0e0d0c0;q=32’h11020304; #1 En=1’b1;#66 En=1’b0;

end initial #600 $stop; endmodule

Figure 6.12 A 32-bit adder with the addition done in successive clock pulses.

t=55, En = 1, p = 1234, q = 4321, r = 5555

t=155, En = 1, p = 12345578, q = 68755432, r = aaaaaaaa

t=255, En = 1, p = abcdef12, q = bbccddee, r = 1576acd00

t=355, En = 1, p = fedcba36, q = 13576bdf, r = 112345518

t=455, En = 1, p = 6875abcd, q = fedc8755, r = 167533332

t=555, En = 1, p = f0e0d0c0, q = 11020304, r = 101e2d3c4

Figure 6.13 Simulation results of the test bench for the adder in Figure 6.12.

6.2.1 Trade-off Between Hardware and Speed

Examples 6.5 and 6.7 represent two extreme cases of a trade-off between speed and
hardware. Minimal hardware is used in Example 6.7 to carry out the addition, but the
execution time is a maximum here due to the repeated and sequential use of the same
hardware block. In contrast, in Example 6.5 the same hardware is replicated to the
maximum extent and the addition is carried out “at one go”, that is, in minimum
time. Circuit-wise, it is a trade-off between silicon area and speed. One can have
nibble or byte adders and do nibble-wise or byte-wise addition; these represent
intermediate levels of trade-offs. Algebraic or logic operations, register-based
operations, etc., are other examples calling for similar trade-off decisions. Buswidth,
memory organization, and ALU sizing all call for such trade-off decisions. In all such
cases a decision may have to be based on considerations of speed of operation, power
consumption, development time, cost, etc.

6.2.2 Scope of Functions

A few observations on functions and their use are in order here [IEEE].

A function has only input arguments. It is to have at least one input. When a function with

multiple input ports is called, the order of arguments in the calling statement should match that of

the input declarations within the

function definition.

Geethanjali College of Engg.&Tech. Department of ECE IV B.Tech II-Sem

DIGITAL DESIGN THROUGH VERILOG HDL Page 142

A function returns an output. It has no separate output ports.

A function can have variables declared and used within it – these are variables
local to the function.

A function can be defined anywhere within the module.

Event or timing based controls are not possible within a function. This
restricts the function to be of a combinational logic type.

A function can be called from within another function. Both the functions are
to be defined within the module.

A function in a module can be called from another module through proper
hierarchical referencing.

A function can be called repeatedly within the module of definition. Expressions can be used

as arguments while calling a function.

Definition of a function should not be within any initial or always block. or
within another function.

A function uses a register of the declared type and size to return the value of the output. Such

a returned value can be real, integer, time, or

realtime type. It can also be a vector with a range.

Every variable declared inside a function has a corresponding location inside. These locations

are physical entities. Each time a function is called, the same set of locations is reused. This is in

contrast to the instantiation of a module where with every instantiation, a fresh set of locations is

assigned.

6.2.3 Recursive Functions

Consider a function to compute the sum of the squares of the first n natural numbers:

The sum designated as Sn can be expressed as

Sn= .n2+ (n - 1)2+ + 32+ 22+12

Sn can be expressed as

Sn = n2 + Sn-1

where Sn-1 represents the sum of the squares of the first (n – 1) natural numbers. Thus

if Sn-1 were known, Sn can be obtained by adding n2 to it. Continuing the same
argument one can recursively arrive at the following:
Sn-1= (n - 1)2+ Sn-2 Sn-2= (n - 2)2+ Sn-3

…
…

Geethanjali College of Engg.&Tech. Department of ECE IV B.Tech II-Sem

DIGITAL DESIGN THROUGH VERILOG HDL Page 143

S2 = 22 + S1

We know that

S1 = 1.

The actual computation is carried out in the reverse order; that is, one computes S1
directly and the subsequent sums S2, S3, etc., are computed from it recursively – every
sum by adding an increment to the previous sum.

A similar procedure can be adopted to compute factorials, infinite series and so on. Latest version

of the LRM (2001) has expanded the scope of Functions to accommodate recursive functions. The

keyword automatic following the keyword function implies it to be recursive. A recursive

function can be called in the same manner as a nonrecursive function. Recursive function call is

explained here through an example.

Example 6.8
The module sum_sq in Figure 6.14 computes the sum of the squares the first n
natural numbers.
function automatic integer sum_sq; input n;
begin

if(n==1) sum_sq =1;

else sum_sq = sum_sq + n*n;

end endfunction
Figure 6.14 A module to compute the sum of squares of the firstnnatural numbers.

Geethanjali College of Engg.&Tech. Department of ECE IV B.Tech II-Sem

DIGITAL DESIGN THROUGH VERILOG HDL Page 144

The term “automatic” in the function declaration statement ensures

recursive computation. Thus if n is assigned the value 4, during

compilation sum_sq (4) will be successively replaced by

sum_sq (3) + 42, sum_sq (4) + 32+ 42,

sum_sq (4) + 22+ 32+ 42and finally by12 + 22 + 32 + 42.
6.3 TASKS

The role of a task in a module is similar to that of a subroutine in a
program. It is defined within a module and can be called as many times as
desired within a procedural block. Its scope and role are wider than those
of a function.

6.3.1 Task Definition

The task definition is brought out in Figure 6.15. The first statement starts
with the keyword task; it is followed by an identifier name and the

customary semicolon. The input, inout, and the output declarations
follow. Their order is not rigid. The body of the task comprises of a
number of behavioral level statements. They may be executed in zero time
or at specified time intervals or events. Thus the time of exit from a task
can differ from that of entry to it.

6.3.2 Task Enabling

A task is enabled through a statement akin to the instantiation of a gate. It
is enabled like a procedural assignment by specifying the task name
followed by the list of arguments within brackets followed by the
semicolon. A typical enabling statement has the form

Do_it (Expression1, Expression2, . .);
where

Do_it is the name of the task being enabled, Expression1 is the first

argument, Expression2 is the second argument,
and so on.

The type and order of the arguments should match those of the respective

declarations within the definition of the task. In a general case, an argument can be an

expression. The following are characteristic of a task:

Geethanjali College of Engg.&Tech. Department of ECE IV B.Tech II-Sem

DIGITAL DESIGN THROUGH VERILOG HDL Page 145

Task definition starts with the keyword task

Name assigned to the task

 task do_it ;

 input ;

output...;

 All inputs, outputs and inout are declared here.

 inout.. ;

Local variable

 Variables that are local to the task are declared inside.

 These variables are not available or accessible from

declarations

outside

 begin

 procedural The body (The executable portion) of the task is in the

 assignments form of one or more procedural assignments

 end

endtask

Signifies the end of the task

 Figure 6.15 Typical structure of a task.

A task can be activated by an event, sensitivity list, etc.

A task can have activities assigned within it which are event-controlled or
time-controlled.

A task can have input, output and inout; however it need not necessarily have
any of these; it can be complete in itself.

A task can enable other tasks and functions.

A task can call itself. The latest version of the LRM supports recursion. The
keyword automatic is added to the keyword task to make it recursive.

All assignments to a task are passed to it by value and not through a pointer to
the argument.

A task in a module can be invoked from another module through a hierarchical reference.

The arguments passed to a task retain their type within their environment of use. Thus a wire-

type argument passed to a task as input cannot have its value altered within the task through an

assignment.

There are no apparent restrictions on the input arguments of a task. They can be nets, regs, or

expressions involving them. But any argument of inout or output type has to be a variable or of a similar

type; the restrictions are similar to those on the quantities on the left side of procedural assignments.

The use of tasks is illustrated through a set of four examples here.

Geethanjali College of Engg.&Tech. Department of ECE IV B.Tech II-Sem

DIGITAL DESIGN THROUGH VERILOG HDL Page 146

6.4 USER-DEFINED PRIMITIVES (UDP)

The primitives available in Verilog are all of the gate or switch types. Verilog has the
provision for the user to define primitives – called “user defined primitive (UDP)” and
use them. A UDP can be defined anywhere in a source text and instantiated in any of
the modules. Their definition is in the form of a table in a specific format. It makes the
UDP types of functions simple, elegant, and attractive. UDPs are basically of two
types – combinational and sequential. A combinational UDP is used to define a
combinational scalar function and a sequential UDP for a sequential function.

6.4.1 Combinational UDPs

A combinational UDP accepts a set of scalar inputs and gives a scalar output. An
inout declaration is not supported by a UDP. The UDP definition is on par

withthat of a module; that is, it is defined independently like a module and can be used
in any other module. The definition cannot be within any other module.

Definition of a combinational type of UDP is illustrated through an example in Figure 6.22; it shows a

simple UDP for an AND operation. The following are noteworthy:

The first statement starts with the keyword “primitive”, it is followed by the
name assigned to the primitive and the port declarations.

A UDP can have only one output port. It has to be the first in the port list. All the ports

following the first are input ports and are all scalars.

inout ports are not permitted in a UDP definition.Output and input are declared in the body

of the UDP.

primitive udp_and (out, in1, in2); output out;

input in1, in2; table
// In1 In2 Out
 0 0: 0;
 0 1: 0;
 1 0: 0;
 1 1: 1;
endtable
endprimitive

Figure 6.22 A two-input AND gate defined as a UDP.

The behavior block of the primitive is given in the form of a table. It is
specified between keywords table and endtable.

The combinational function is defined as a set of rows (akin to the truth
table).

Geethanjali College of Engg.&Tech. Department of ECE IV B.Tech II-Sem

DIGITAL DESIGN THROUGH VERILOG HDL Page 147

All the input values are specified first – each in a separate field in the same
order as they appear in the port declaration.

A colon and then the output value follow the set of input values. The
statement ends with a semicolon – as with every statement in Verilog.

A comment line is inserted in the example following the “table” entry. It

facilitates understanding the tabular entries.

All the inputs are nets – wire-type. Hence there is no need for a separate

type definition.

Output can be of the net or reg type depending upon the type of primitive –

explained later.

The last keyword statement – “endprimitive” – signifies the end of the definition.

6.4.2 More General Combinational UDPs

The UDP for the AND gate in Figure 6.22 specifies output values only for definite
values of the inputs but not for their x states. A full and general definition of a UDP is

characterized by the following additional factors:

The output can take on only three values – 0, 1, or x. It cannot take the value

z.

Outputs can be defined for 0, 1, or x values of the inputs but not for the z

state. However if an input takes the value z, it is taken as x.

All the undefined input combinations lead to x state in the output. Hence it is desirable to

specify outputs for all the possible input combinations.

Figure 6.23 shows the UDP definition of an AND gate with all the input combinations included. A

test-bench for the UDP and the simulation results are shown in Figure 6.24.

A two-input UDP has nine rows of tabular entries; their number increases rapidly as the number of

input logic variables increases. LRM has the provision to make the UDP definition more compact. The

symbol “?” can be used to signify all the possible values – that is, 0, 1, or x. Figure 6.25 shows the

elaborate AND gate UDP of Figure 6.23 made compact in this manner. Wherever possible, one can use

the symbol “b” to signify “0” or “1” values and reduce the table size further.

Primitive udp_and (out, in1, in2);

Output out; //UDP of an AND gate defined fully

Input in1, in2;

Geethanjali College of Engg.&Tech. Department of ECE IV B.Tech II-Sem

DIGITAL DESIGN THROUGH VERILOG HDL Page 148

Table
// In1 In2 Out
 0 0: 0;
 0 1: 0;
 1 0: 0;
 1 1: 1;
 X 0: 0;
 X 1: X;
 X X: X;
 0 X: 0;
 1 X: X;
Endtable

Endprimitive

Figure 6.23 A more exhaustive definition of the two2-input AND gate UDP of
Figure 6.21.

module tst_udp_and(); reg in1,in2; wire out;
udp_and uand(out,in1,in2);
initial begin in1=1’b0;in2=1’b0; end always begin

#2 in1=1’b0;in2=1’b1; #2 in1=1’b1;in2=1’b0; #2 in1=1’b1;in2=1’b1; end

initial $monitor($time ,”in1 = %b ,in2 = %b ,out = %b “,in1,in2,out); initial #18
$stop;
endmodule

Simulation results

//# 0in1 = 0 , in2 = 0 , out = 0
//# 2in1 = 0 , in2 = 1 , out = 0
//# 4in1 = 1 , in2 = 0 , out = 0
//# 5in1 = 1 , in2 = 1 , out = 1
//# 8in1 = 0 , in2 = 1 , out = 0
//# 10in1 = 1 , in2 = 0 , out = 0
//# 12in1 = 1 , in2 = 1 , out = 1
//# 14in1 = 0 , in2 = 1 , out = 0
//# 15in1 = 1 , in2 = 0 , out = 0

Figure 6.24 A test bench for the UDP module of Figure 6.23 and the simulation results.

Primitive udp_and_b (out, in1, in2);

Output out;// UDP of an AND gate defined compactly

Input in1, in2;

Table
// In1 In2 Out

 ? 0: 0;
 0 ?: 0;
 x X x
 1 1: 1;
Endtable

Endprimitive

Figure 6.25 The UDP of Figure 6.22 made compact using the symbol “?”.

Geethanjali College of Engg.&Tech. Department of ECE IV B.Tech II-Sem

DIGITAL DESIGN THROUGH VERILOG HDL Page 149

6.4.3 Instantiation of an UDP

UDPs are instantiated in the same manner as gate primitives (see the test bench in
Figure 6.24). It is further illustrated here through an example.

Example 6.13
The full adder accepts three input bits and outputs two bits – a sum bit and a carry bit.
Figure 6.25 shows UDPs for the sum and the carry bits as well as a full adder module
using them. Figure 6.27 shows a test-bench for the Full Adder as well as the simulation
results.
primitive udpsum(sum, in1,in2,carryi); output sum;

input in1, in2, carryi;

table

// in1 in2 carryi: sum
 0 0 0: 0;
 1 1 0: 0;
 0 1 1: 0;
 1 0 1: 0;
 1 0 0: 1;
 0 1 0: 1;
 0 0 1: 1;
 1 1 1: 1;

endtable endprimitive
primitive udpcar(caro,in1,in2,cari); // This udp is for carryout output caro; input in1,
in2, cari;

table

// in1 in2 cari caro
 0 0 ? : 0 ;
 0 ? 0 : 0 ;
 ? 0 0 : 0 ;
 b 1 1 : 1 ;
 1 b 1 : 1 ;
 1 1 b : 1 ;

endtable endprimitive
module fa (car_o, sum_o, in1, in2, car_i); input in1, in2, car_i; output car_o, sum_o;
udpcar aa(car_o,in1,in2,car_i);
udpsum bb(sum_o, in1,in2,car_i); endmodule

Figure 6.25 A full adder module with the sum and carry bits generated through UDPs.

module fa_tst;
reg [2:0] a;wire c,s;integer i; fa cc(c,s,a[0],a[1],a[2]); initial for(i=1;i<8;i=i+1) begin

a=i;

#1 $display($time, “a=%b, cs=%b%b”,a, c, s); end
initial #10 $stop; endmodule
Simulation results

1a=001, cs=01

2a=010, cs=01

3a=011, cs=10

Geethanjali College of Engg.&Tech. Department of ECE IV B.Tech II-Sem

DIGITAL DESIGN THROUGH VERILOG HDL Page 150

4a=100, cs=01

5a=101, cs=10

5a=110, cs=10

7a=111, cs=11

Figure 6.27 A test bench for the full adder module of Figure 6.25 and the simulation
resultsfor the same.

Geethanjali College of Engg.&Tech. Department of ECE IV B.Tech II-Sem

DIGITAL DESIGN THROUGH VERILOG HDL Page 151

Observations:
With three inputs and three states for each input (0, 1, and x), the full table of definition has 27

entries. Such definitions become cumbersome as the number

of inputs increase to even moderate values – say 4 or 5.

Only the entries essential to the definition of the primitive are included here. Others which lead

to x output are left out intentionally. Thus with the carry primitive if any two inputs have x values,

the output car_o too has x value.

Hence such a row has not been specified.

“?” and “b” have been used in the primitive definition to make the tables more compact

6.4.4 Combinational UDP and Function

Definition-wise, UDP and function are similar, though their formats differ (i.e., a UDP
definition is in the form of a table while the function definition is as a sequence of
procedural assignments). UDPs are stand-alone-type primitives and can be instantiated
in any module. In contrast, a function is defined within a module; it cannot be
accessed anywhere outside the module of definition.

6.4.5 Sequential UDPs

Any sequential circuit has a set of possible states. When it is in one of the specified
states, the next state to be taken is described as a function of the input logic variables
and the present state [Wakerly]. A positive or a negative going edge or a simple change
in a logic variable can trigger the transition from the present state of the circuit to the
next state. A sequential UDP can accommodate all these. The definition still remains
tabular as with the combinational UDP. The next state can be specified in terms of the
present state, the values of input logic variables and their transitions. The definition
differs from that of a combinational UDP in two respects:

The output has to be defined as a reg. If a change in any of the inputs so

demands, the output can change.

Values of all the input variables as well as the present state of the output can affect the next

state of the output. In each row the input values are entered in different fields in the same

sequence as they are specified in the input port list. It is followed by a colon (:). The value of the

present state is entered in the next field which is again followed by a colon (:). The next state value

of the output occupies the last field. A semicolon (;) signifies the end of a row definition (see the

examples below).

Geethanjali College of Engg.&Tech. Department of ECE IV B.Tech II-
Sem

DIGITAL DESIGN THROUGH VERILOG HDL Page 152

6.4.6 Sequential UDPs and Tasks

Sequential UDPs and tasks are functionally similar. Tasks are defined
inside modules and used inside the module of definition. They are not
accessible to other modules. In contrast, sequential UDPs are like other
primitives and modules. They can be instantiated in any other module of
a design.

6.4.7 UDP Instantiation with Delays

Outputs of UDPs also can take on values with time delays. The delays
can be specified separately for the rising and falling transitions on the
output. For example, an instantiation as
udp_and_b # (1, 2) g1(out, in1, in2);
can be used to instantiate the UDF of Figure 6.25 for carry output
generation. Here the output transition to 1 (rising edge) takes effect with
a time delay of 1 ns. The output transition to 0 (falling edge) takes effect
with a time delay of 2 ns. If only one time delay were specified, the same
holds good for the rising as well as the falling edges of the output
transition.

6.4.8 Vector-Type Instantiation of UDP

UDP definitions are scalar in nature. They can be used with vectors with

proper declarations. For example, the full-adder module fa in Figure 6.25
can be instantiated as an 8-bit vector to form an 8-bit adder. The
instantiation statement can be
fa [7:0] aa(co, s, a, b, {co[5:0],1’b0});
s (sum), co (carry output), a (first input), and b(second input) are all 8-bit
vectors here. The vector type of instantiation makes the design
description compact; however, it may not be supported by some
simulators.

Geethanjali College of Engg.&Tech. Department of ECE
IV B.Tech II-Sem

DIGITAL DESIGN THROUGH VERILOG HDL Page 153

Truth Tables of Gates and Switches

The truth tables for gates are given with two inputs each;
it remains the same for multiple inputs as well. The inputs
are designated as ‘Input 1’ and ‘Input 2’; the output values
are in the respective cells of the table.

Table B.1 Truth table of AND gate

Input 1
0 1 x z

 0 0 0 0 0

 2

 1 0 1 x x

In
p

u
t

 x 0 x x x

z 0 x x x

Table B.2 Truth table of OR gate

Input 1
 0 1 x z

0 0 1 x x

2

In
p

u
t 1 1 1 1 1

 x x 1 x x

z

x 1 x x

Table B.3 Truth table of NAND gate

Input 1
0 1 x z

 0 1 1 1 1

 2 1 1 0 x x

In
p
u

t

 x 1 x x x

z

1 x x x

Table B.5 Truth table of XOR gate

 Input 1

 0 1 x z

 0 0 1 x x

 2

 1 1 0
x

x

In
p

u
t

 x x x x x

 z x x x x

Table B.4 Truth table of NOR gate

Input 1
0 1 x z

2
 0 1 0 x x

1

0 0 0 0

In
p

u
t

 x x 0 x x

z

x 0 x x

Table B.5 Truth table of XNOR gate

 Input 1

 0 1 x z

 2
 0 1 0 x x

1

0

1

x

x

In
p

u
t

 x x x x x

z

x

x

x

x

Geethanjali College of Engg.&Tech. Department of ECE IV B.Tech II-Sem ECE

DIGITAL DESIGN THROUGH VERILOG HDL Page 154

15. Additional Topics :

Shall be provided later, as this has a revised syllabus and the course content is to be studied in

details.

16.University previous Question papers:

Geethanjali College of Engg.&Tech. Department of ECE IV B.Tech II-Sem ECE

DIGITAL DESIGN THROUGH VERILOG HDL Page 155

Geethanjali College of Engg.&Tech. Department of ECE IV B.Tech II-Sem ECE

DIGITAL DESIGN THROUGH VERILOG HDL Page 156

Geethanjali College of Engg.&Tech. Department of ECE IV B.Tech II-Sem ECE

DIGITAL DESIGN THROUGH VERILOG HDL Page 157

Code No:07A80405

IVB.TechIISemesterExaminations,APRIL2011DIGITAL DESIGN THROUGH VERILOG

Common to Bio-Medical Engineering, Electronics AndComputerEngineering, Electronics And

CommunicationEngineering

Time: 3hours Max Marks:80
Answer any FIVEQuestionsAll Questions carry equalmarks

1. (a) Classify and explain strengths and contentionresolution?
(b) Designmoduletoillustrateuseofthewand-

typenetandtestbenchwithstimulationresults? [8+8]

2. (a) Design half-adder module with time delay assignment through parameterdec-

laration.

(b) Write Test bench, simulation results for theabove. [8+8]
3. Explain the followingterms.

(a) Simulation

(b) Synthesis

(c) Implementation

(d) HDLS [16]
4. (a) Design verilog code of OR gate using for anddisable.

(b) Write simulation results of above question with explanation. [8+8]
5. Design HDL module for UART Transmitter. [16]
6. (a)Designaverilogmoduleofa4bitbusswitcheratthedataflowlevel.

(b) Design verilog module of an edge triggered flip-flop built with the latch

atthedata flowlevel. [8+8]

7. Explain one hot state assignment withexample. [16]
8. (a)Drawtheblockdiagramforadividerthatdividesan8-bitdividendbya5-

bitdivisortogivea3-bitquotient.ThedividendregistershouldbeloadedwhenSt=1.

(b) Draw an SM chart for the controlunit. [8+8]

R07 SetNo. 2

Geethanjali College of Engg.&Tech. Department of ECE IV B.Tech II-
Sem ECE

DIGITAL DESIGN THROUGH VERILOG HDL Page 158

Code No:07A80405
IVB.TechIISemesterExaminations,APRIL2011DIGITAL DESIGN THROUGH VERILOG

Common to Bio-Medical Engineering, Electronics AndComputerEngineering, Electronics

And CommunicationEngineering

Time: 3hours Max Marks:80
Answer any FIVEQuestionsAll Questions carry equalmarks

1. (a) Design CMOSflipflop.
(b) Design verilog module for CMOS flipflop. [8+8]

2. (a) Define While loop, write syntax with flowchart.

(b) Explain for loop example with verilogcode. [8+8]

3. (a) Design a D flip flop using NAND gates.

(b) Write a verilog code for D flip flop using NAND gates. [8+8]

4. (a) Explain the linked statemachines.
(b) Explain the linked SM charts to Dicegame. [8+8]

5. (a) Write about $ readmemb with example.

(b) Write value change dumpfile. [8+8]

6. Explain UART Receiver with SM Chart. [16]

7. Explain about flex 10k embedded arrayblock. [16]

8. (a) Explain simple latch with verilogmodule?
(b) Explain RS Flip-flop with verilog module and TestBench? [8+8]

Code No: R05420405 Set No. 3

R07 SetNo. 4

Geethanjali College of Engg.&Tech. Department of ECE IV B.Tech II-
Sem ECE

DIGITAL DESIGN THROUGH VERILOG HDL Page 159

IV B.Tech II Semester supply Examinations, September/November 2009 DIGITAL

DESIGN THROUGH VERILOG

(Common to Electronics & Communication Engineering, Bio-Medical Engineering

and Electronics & Computer Engineering)

Time: 3 hours Max Marks: 80

Answer any FIVE Questions

All Questions carry equal marks
1. Explain Top-down Design methodology with example? [16]

2. (a) Design a Master Slave JK flip flop using NAND gates.

(b) Write a verilog code for Master Slave JK flip flop using NAND gates. [8+8]

3. Write Short Notes for following with Examples:

(a) Intra Assignment Delays

(b) Delay Assignments

(c) Zero Delay [16]

4. (a) Design CMOS switch with a single control line.

(b) Design code, testbench, results for CMOS switch with a single control line. [8+8]

5. (a) Explain module paths.

(b) Design verilog module using of path delay. [8+8]

6. (a) Explain Dice game with block diagram.

(b) Explain Dice game using flow chart. [8+8]

7. (a) Explain about XC4000 implementation of multiplier control.

(b) Write differences between FPGA and CPLD. [8+8]

8. Design HDL module for Baud rate generator.

Geethanjali College of Engg.&Tech. Department of ECE IV B.Tech II-Sem ECE

DIGITAL DESIGN THROUGH VERILOG HDL Page 160

Code No: R05420305 Set No. 1

IV B.Tech II Semester supply Examinations, September/November 2010 DIGITAL DESIGN

THROUGH VERILOG

(Common to Electronics & Communication Engineering, Bio-Medical Engineering and

Electronics & Computer Engineering)

Time: 3 hours Max Marks: 80

Answer any FIVE Questions

All Questions carry equal marks

1. (a) Design a JK flip flop using NAND gates.

(b) Write a verilog code for JK flip flop using NAND gates.[8+8]

2. (a) Explain module with an example using verilog code?

(b) Explain port Declaration with an example using verilog code?[8+8]

3. (a) Explain edge sensitive path using an example.

(b) Explain over riding parameters.[8+8]

4. Explain UART Transmission with SM Chart. [16]

5. (a) Explain NMOS enhancement with conditions.

(b) Write about Basic switch primitives.[8+8]

6. Explain parallel adder-subtractor with logic cell. [16]

7. (a) Write a verilog module for a rudimentary serial transmitter module.

(b) Explain Multiple Always Blocks.[8+8]

8. (a) Construct an PLA and D-flip flop equivalent to the following state table. Test only one

variable in each decision box. Try to minimize the number of decision boxes.

(b) Write a VHDL description of the state machine based on the PLA and D-flip flop. [8+8]

Geethanjali College of Engg.&Tech. Department of ECE IV B.Tech II-Sem ECE

DIGITAL DESIGN THROUGH VERILOG HDL Page 161

17.Question Bank:

UNIT1:

1) Explain programming language interface

2) Explain levels of design description

3) Explain simulation and synthesis with differences

4) Write about system tasks with examples?

UNIT2:

1) Mention keywords and their significance?

2) Explain data types of Verilog.

3) Explain the following (a) scalars and vectors (b) parameters (c) white space.

4) Explain operator in Verilog.

5) Explain system tasks.

UNIT 3:

1) Explain gate level modeling with example?

2) Design half adder using gate level modeling?

3) Design full adder using gate level modeling?

4) Design full adder using half adder using gate level modeling?

5) Explain delays with an example

6) Explain net types

7) Design d flip flop with gate primitives

8) Explain tri state gates

9) Write about module structure

10) Write the Verilog program for 2 bit comparator in gate model?

UNIT 4

1) Write about continuous assignment structures

2) Explain assignment to vectors

3) Explain delays with a program

4) Explain wait construct with an example

5) Explain force release construct with an example

6) Explain forever loop

7) Explain the difference between blocking and non blocking assignments

8) Explain repeat construct

9) Explain design at behavioral levels

10) Explain if and else if constructs

11) Explain case statement with a program

12) Write about simulation flow?

UNIT 5:

1) Explain operators in data flow?

2) Design half adder using data flow modeling?

3) Design full adder using data flow modeling?

4) Design full adder using half adder using data flow modeling?

Geethanjali College of Engg.&Tech. Department of ECE IV B.Tech II-Sem ECE

DIGITAL DESIGN THROUGH VERILOG HDL Page 162

5) Write the Verilog code for cmos NOR in data flow model

6) Write the Verilog code for nmos NOR in data flow model

7) Write the Verilog code for cmos NAND in data flow model.

8) Explain basic transistor switches.

9) Explain CMOS switches.

10) Write the Verilog code for CMOS NOR in switch level model.

11) Write the Verilog code for NMOS NOR in switch level model.

12) Write the Verilog code for CMOS NAND in switch level model.

UNIT 6:

1) Explain parameters

2) Explain path delays

3) Explain file based tasks with an examples

4) Explain hierarchical access with a program

5) Explain system based tasks and functions

6) Explain sequence detector with FSM program

7) What are user defined primitives

8) What are complier directives

9) Explain module parameters

10) Explain Dice game with block diagram.Explain Dice game using flow chart.

11) Explain and design verilog module of timing related parameter with example.

12) Explain parameter declaration and assignments.

UNIT 7:

1) Write a brief notes on sequential models.

2) Write short notes on

a) Feedback model

b) Capacitive model

c) Implicit model

3) Write about the differences between scalars and vectors in verlog modules with

example.

UNIT 8:

1) Explain clocked rs flip-flop verilog module and test bench.

2) Write a verilog module for a rudimentary serial transmitter module.

3) Explain about multiple always blocks.

4) Discuss about the combinational circuit testing.

18.Assignment Topics: To be provided after revising previous question papers.

19.Unit wise bits:

Unit 1:

1) At the circuit level, a switch is the basic element with which digital circuits are built.

2) Verilog has the basic MOS switches built into its constructs.

Geethanjali College of Engg.&Tech. Department of ECE IV B.Tech II-Sem ECE

DIGITAL DESIGN THROUGH VERILOG HDL Page 163

3) All the basic gates are available as ready modules called “Primitives”.

4) All possible operations on signals and variables are represented here in terms of

assignments.

5) In an electronic circuit all the units are to be active and functioning concurrently.

6) Concurrency is achieved by proceeding with simulation in equal time steps.

7) Translation of the debugged design into the corresponding hardware circuit is called

“synthesis.”

8) The test benches are mostly done at the behavioral level.

9) Any basic gate has propagation delays and transmission delays associated with it.

10) PLI provides an active interface to a compiled Verilog module.

11) Any Verilog program begins with a keyword – called a “module.”

12) A module comprises a number of “lexical tokens” arranged according to some

predefined order.

13) Each module can be defined only once.

14) One module cannot be defined inside another – they cannot be nested.

15) Simulation results can alternately be viewed as waveforms.

Unit 2:

1) Any source file in Verilog is made up of a number of ASCII characters.

2) Verilog is a case-sensitive language like C.

3) A keyword signifies an activity to be carried out, initiated, or terminated.

4) Module signifies the beginning of a module definition. endmodule signifies the end of

a module definition.

5) All characters of the alphabet or an underscore can be used as the first character.

6) 1_name not allowed as an identifier, since the numeral “1” is the first character.

7) \abc // Here the combination “abc” forms the identifier.

8) One can incorporate multiline comments also without resorting to “//” at every line.

9) Integers can be represented in two ways. In the first case it is a decimal number –

signed or unsigned; an unsigned number.

10) When a signal line is driven simultaneously from two sources of different strength

levels, the stronger of the two prevails.

11) The data handled in Verilog fall into two categories: Net data type and Variable data

type

12) A net signifies a connection from one circuit unit to another.

Geethanjali College of Engg.&Tech. Department of ECE IV B.Tech II-Sem ECE

DIGITAL DESIGN THROUGH VERILOG HDL Page 164

Unit 3:

1) The last statement in any module definition is the keyword “endmodule”.

2) In all cases of instantiations, one need not necessarily assign a name to the

instantiation.

3)

4) The A-O-I gate module has three instantiations – two of these being AND gates and

the third a NOR gate.

5) Signals at the ports can be identified by a hierarchical name.

6) The primitives available in Verilog can also be instantiated as arrays.

7) The assignment of different bits of input vectors to respective gates is implicit in the

basic declaration itself.

8) In all array-type instantiations, the array sizes are to be matched.

9) Verilog has the facility to account for different types of propagation delays of circuit

elements.

10) Any connection can cause a delay due to the distributed nature of its resistance and

capacitance.

11) One of the simplest delays is that of a direct connection – a net. It can be part of the

declaration statement.

12) In practical situations, outputs of logic gates and signals on nets in a circuit have

associated source impedances.

Unit 4:

1) Behavioral level modeling constitutes design description at an abstract level.

2) The description is carried out essentially with constructs similar to those in “C”

language.

3) The design description at the behavioral level is done through a sequence of

assignments.

4) Only the blocks which are to be identified and referred by the simulator need be

named.

5) Regs declared and used within a block are static by nature.

and ga (o, i1, i2, . . .

i8); Output port is o

Geethanjali College of Engg.&Tech. Department of ECE IV B.Tech II-Sem ECE

DIGITAL DESIGN THROUGH VERILOG HDL Page 165

6) A set of procedural assignments within an initial construct are executed only once –

and, that too, at the times specified for the respective assignments.

7) Simulators have the facility to observe the waveforms and changes in the magnitudes

of different variables with simulation time.

8) A module can have as many initial blocks as desired.

9) The progress of simulation time in different blocks is concurrent.

10) The always block is executed repeatedly and endlessly. It is necessary to specify a

condition or a set of conditions, which will steer the system to the execution of the

block.

11) A delay of 0 ns does not really cause any delay. However, it ensures that the

assignment following is executed last in the concerned time slot.

12) The wait construct makes the simulator wait for the specified expression to be true

before proceeding with the following assignment.

13) Delays – of the assignment type and the intra-assignment type – can be associated

with non-blocking assignments.

14) The case statement is an elegant and simple construct for multiple branching in a

module.

Unit 5:

1) A simple two input AND gate in data flow format has the form assign c = a && b;

2) “assign” is the keyword carrying out the assignment operation.

3) Delays can be incorporated at the data flow level in different ways.

4) One can concatenate vectors, scalars, and part vectors to form other vectors.

5) The concatenated vector is enclosed within braces.

6) Operators can carry out specified operations on the operands and assign the results to

a net or a vector set of nets.

7) Unary operators do an operation on a single operand and assign the result to the

specified net.

8) If any bit of an operand is x or z in an arithmetic operation, the result takes the x

value.

9) The equality operator makes a bit-by-bit comparison of the two operands and

produces a result bit.

Geethanjali College of Engg.&Tech. Department of ECE IV B.Tech II-Sem ECE

DIGITAL DESIGN THROUGH VERILOG HDL Page 166

Unit 7:

1) In digital circuits , storage of data is done either by feedback or by gate capacitances

that are refreshed frequently.

2) Feedback models and capacitive models are technology dependent.

3) Verilog provides timing check constructs for ensuring correct operation of implicit

modeling.

4) A sequential UDP has the format of the combinational UDP except that its inputs,

outputs and present state is also specified.

5) Q = d; q_b = ~d; are blocking assignments.

6) Q <= d; q_b <= ~d; are non-blocking assignments.

7) With each clock edge, the entire procedural block is executed once from begin to end.

8) A fork-join bracketing instead of begin-end causes all sequential statements to be

executed in parallel.

9) A sequential assign statement forces a value into reg type variable, and a sequential

deassign removes it.

10) Setup time is the minimum necessary time that a data input requires to setup before it

is clocked into a flip-flop.

11) Hold time is the minimum necessary time that a flip-flop data must stay stable after it

is clocked.

12) $readmemh and $readmemb tasks are for reading external data files and using them

for initialization of memory blocks.

13) An inout bus is only considered as net and cannot be declared as a reg.

14) Verilog PLA modeling tasks use a personality memory whose contents determine

PLA fusing.

15) A register is a group of flip-flops with a common clock.

16) A moore machine is a state machine in which all outputs are fully synchronized with

the circuit clock.

17) In a mealy machine, its output depends on its current state and inputs.

Unit 8:

1) Verilog simulation environment provide tools for graphical or textual display of

simulation results.

Geethanjali College of Engg.&Tech. Department of ECE IV B.Tech II-Sem ECE

DIGITAL DESIGN THROUGH VERILOG HDL Page 167

2) A Verilog testbench is a Verilog module that instantiates an MUT applies data to it and

monitors its output.

3) Testing sequential circuits involves synchronization of circuit clock with other data

inputs.

4) $stop and $finish are simulation control tasks.

5) Formal verification is a way of automating design verication by eliminating

testbenches and problems associated with their data generation and response

observation.

6) The assert_one_hot assertion monitor checks that while the monitor is active only one

bit of its n-bit expression is 1.

7) The assert_cycle_sequence is a very useful assertion for verifying state machines.

8) A useful assertion for checking expected events or events implied by other events is

the assert_implication assertion.

9) Assert_next assertion verifies that starting and an ending events occur with a specified

number of clocks in between.

10) In assertion verification, in-code monitors take the responsibility of issuing a message

if something happens that is not expected.

20.Tutorial class sheets:

Shall be provided later, the course content is to be studied in details.

21.Known gaps:

Shall be provided later, the course content is to be studied in details.

22. Discussion Topics if any

1) Design of digital circuits using different modeling levels of Verilog.

2) To write a synthesizable code.

3) To understand the use of test bench in real time projects.

Geethanjali College of Engg.&Tech. Department of ECE IV B.Tech II-Sem ECE

DIGITAL DESIGN THROUGH VERILOG HDL Page 168

23.References, Journals, websites and E-links:

REFERENCES:

1. Fundamentals of Logic Design with Verilog – Stephen. Brown and Zvonko Vranesic,

TMH, 2005.

2. Digital Systems Design using VHDL – Charles H Roth, Jr. Thomson Publications, 2004.

3. Advanced Digital Design with Verilog HDL – Michael D. Ciletti, PHI, 2005.

4. Digital systems Design using VHDL – Charles H Roth, Jr. Thomson Publications, 2004.

24.Quality Control Sheets:

Shall be provided later

25. Students List

 To be updated

26. Group-Wise students list for discussion topics

To be updated

