CONTENTS REOUIRED FOR
 COURSE FILE

1. Cover Page
2. Syllabus copy
3. Vision of the Department
4. Mission of the Department
5. PEOs and POs
6. Course objectives and outcomes
7. Brief notes on the importance of the course and how it fits into the curriculum
8. prerequisites
9. Instructional Learning Outcomes
10.Course mapping with PEOs and POs
11.Class Time Table
12.Individual Time Table
13.Micro Plan with dates and closure report
14.Detailed notes
15.Additional topics
16.University Question papers of previous years
17.Question Bank
18.Assignment topics
19.Unit wise Quiz Questions
20.Tutorial problems
21.Known gaps ,if any
22.Discussion topics
23.References, Journals, websites and E-links
24.Quality Control Sheets
25.Student List
10. Group-Wise students list for discussion topics

PRINCIPLES OF ELECTRICAL ENGINEERING

COURSE FILE

Prepared by
MANJUL KHARE
B. RAMESH BABU
M.PRADEEP
POOJA RANI

2.SYLLABUS

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITYHYDERABAD
 II Year B.Tech.E CE -II Sem
 T P C
 4+1* 04

PRINCIPLES OF ELECTRICAL ENGINEERING

Objectives:

The course introduces the basic concepts of transient analysis of the circuits, the basic two-port network parameters and the design analysis of filters and attenuators and their use in the circuit theory. The emphasis of this course is laid on the basic operation of the DC machines and transformers which includes DC generators and motors, single-phase transformers.

UNIT -I Transient Analysis (First and Second Order Circuits)

Transient Response of RL, RC Series, RLC Circuits for DC excitations, Initial Conditions, Solution using Differential Equations approach and Laplace Transform Method.

UNIT - II - Two Port Networks
Impedance Parameters, Admittance Parameters, Hybrid Parameters, Transmission (ABCD) Parameters, Conversion of one Parameters to another, Conditions for Reciprocity and Symmetry, Interconnection of Two Port networks in Series, Parallel and Cascaded configurations, Image Parameters, Illustrative problems.

UNIT - III - Filters and Symmetrical Attenuators

Classification of Filters, Filter Networks, Classification of Pass band and Stop band, Characteristic Impedance in the Pass and Stop Bands, constant- K Low Pass Filter, High Pass Filter, m-derived TSection, Band Pass filter and Band Elimination filter, Illustrative Problems.

Symmetrical Attenuators - T Type Attenuator, - Type Attenuator, Bridged T type Attenuator, Lattice Attenuator.

UNIT -IV - DC Machines

Principle of Operation of DC Machines, EMF equation, Types of Generators, Magnetization and Load Characteristics of DC Generators.

DC Motors, Types of DC Motors, Characteristics of DC Motors, Losses and Efficiency, Swinbrune's Test, Speed Control of DC Shunt Motor, Flux and Armature Voltage control methods.

UNIT - V - Transformers and Their Performance

Principle of Operation of Single Phase transformer, Types, Constructional Features, Phasor Diagram on no Load and Load, Equivalent Circuit, Losses and Efficiency of Transformers and Regulation, OC and SC Tests, Predetermination of Efficiency and Regulation (Simple Problems). Synchros, Stepper Motors,

Text Books :

1. Electric circuits- A.Chakrabarthy, Dhanipat Rai \& Sons.
2. Basic concepts of Electrical Engineering- PS Subramanyam, BS Publications

Reference Books :

1. Engineering Circuit Analysis - W.H.Hayt and J. E. Kermmerly and S. M. Durbin 6 ed., 2008 TMH.
2. Basic Electrical Engineering- S.N.Singh, PHI.
3. Electrical Circuits- David A.Bell, Oxford University Press.
4. Electric Circuit Analysis- K.S.Suresh Kumar, Pearson Education.

3.Vision of the Department

To impart quality technical education in Electronics and Communication Engineering emphasizing analysis, design/synthesis and evaluation of hardware/embedded software using various Electronic Design Automation (EDA) tools with accent on creativity, innovation and research thereby producing competent engineers who can meet global challenges with societal commitment.

4.Mission of the Department

i. To impart quality education in fundamentals of basic sciences, mathematics, electronics and communication engineering through innovative teaching-learning processes.
ii. To facilitate Graduates define, design, and solve engineering problems in the field of Electronics and Communication Engineering using various Electronic Design Automation (EDA) tools.
iii. To encourage research culture among faculty and students thereby facilitating them to be creative and innovative through constant interaction with $\mathrm{R} \& \mathrm{D}$ organizations and Industry.
iv. To inculcate teamwork, imbibe leadership qualities, professional ethics and social responsibilities in students and faculty.

5. Program Educational Objectives and Program outcomes of

B. Tech (ECE) Program

Program Educational Objectives of B. Tech (ECE) Program :

I. To prepare students with excellent comprehension of basic sciences, mathematics and engineering subjects facilitating them to gain employment or pursue postgraduate studies with an appreciation for lifelong learning.
II. To train students with problem solving capabilities such as analysis and design with adequate practical skills wherein they demonstrate creativity and innovation that would enable them to develop state of the art equipment and technologies of multidisciplinary nature for societal development.
III. To inculcate positive attitude, professional ethics, effective communication and interpersonal skills which would facilitate them to succeed in the chosen profession exhibiting creativity and innovation through research and development both as team member and as well as leader.

Program Outcomes of B.Tech ECE Program:

1. An ability to apply knowledge of Mathematics, Science, and Engineering to solve complex engineering problems of Electronics and Communication Engineering systems.
2. An ability to model, simulate and design Electronics and Communication Engineering systems, conduct experiments, as well as analyze and interpret data and prepare a report with conclusions.
3. An ability to design an Electronics and Communication Engineering system, component, or process to meet desired needs within the realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability and sustainability.
4. An ability to function on multidisciplinary teams involving interpersonal skills.
5. An ability to identify, formulate and solve engineering problems of multidisciplinary nature.
6. An understanding of professional and ethical responsibilities involved in the practice of Electronics and Communication Engineering profession.
7. An ability to communicate effectively with a range of audience on complex engineering problems of multidisciplinary nature both in oral and written form.
8. The broad education necessary to understand the impact of engineering solutions in a global, economic, environmental and societal context.
9. A recognition of the need for, and an ability to engage in life-long learning and acquire the capability for the same.
10. A knowledge of contemporary issues involved in the practice of Electronics and Communication Engineering profession
11. An ability to use the techniques, skills and modern engineering tools necessary for engineering practice.
12. An ability to use modern Electronic Design Automation (EDA) tools, software and electronic equipment to analyze, synthesize and evaluate Electronics and Communication Engineering systems for multidisciplinary tasks.
13. Apply engineering and project management principles to one's own work and also to manage projects of multidisciplinary nature

6. Course objectives and outcomes:

COURSE EDUCATIONAL OBJECTIVES (CEOs)

UNIT	OBJECTIVES	
1.	To Know the Transient behavior of First Order and Second Order Circuits	
2.	To Know the various parameters of Two Port networks and conditions of parameters and applications	
3	To know the different types of Filters and applications	
	To know the different types of Attenuators and their applications	
4	To know the principle and operation of DC Motor ,constructional design and to find torque and efficiency of a dc motor applications	
	To know the constructional details of Generator and able to find the emf and applications	
5	To know the Principle and operation of a transformer and phasor diagrams and testing of transformer and to find efficiency of a transformer and applications	
	To know the operation and principle of different types of special motors and applications	
COURSE OUTCOMES(Cos)		
MOD	ULES	OUTCOMES
UNIT-I (Transient Analysis First order and Second order circuits)		
Transient Response of RL circuit		To solve First order circuit of a RL circuit problems w.r.t initial conditions
Transient Response of RCcircuit		To solve First order circuit of a RC circuit problems w.r.t initial conditions
RLC Circuit		To solve second order circuit by differential equation approach method for given initial conditions
Laplace transform method		Students can able to solve first order and second order circuits using Laplace transform method
UNIT -II(Two Port Network)		
Impedance and Admittance parameters		Students can able to find the impedance and admittance of given circuit and their condition
Pas band and Stop band filter		Ability to design pas band and stop band filters and their applications
Conversion of one parameter to another parameter		Students can able to convert one parameter to another parameter and also solve the twoport network problems
Condition for Reciprocity and Symmetry		Ability to get condition for reciprocity and symmetry for different parameters

Interconnection of networks	Students can able to design of different networks and able to find parameters for seires,parallel,cascaded networks
UNIT -III(Filters \& Symmetrical Attenuators)	
Classification of filters and networks	Students can identify different types of filters and their classification
Alternating Quantities	Students can identify and analyze the different types of alternating quantities and importance
Phasor diagrams	Ability to draw phasor diagrams for different types of ac networks and relationship between the quantities
Series circuits	Design the series circuit and solve the circuit problems
Symmetrical Attenuators	Students can identify and analyze the different type of Attenuators
T-type Attenuator	Ability to Design the T-Attenuator and its use
Pie -Attenuator	Ability to Design the Pie-Attenuator and its use
Bridge type Attenuator	Ability to Design the Bridge-Attenuator and its use
UNIT-IV(DC MACHINES)	Design and Construction of a dc generator and principle of operation
Operation and Construction	Students can able to know different types of generators and their functions
Types of generators	Ability to derive EMF equation and calculate EMF for given parameters
EMF equation of generator	
Principle of operation of dc motor	Students can understand the principle and operation of dc motor
Construction	Design and construction of a dc Motor
Types of DC motor	Students can able to know different types of motors and their functions
Torque	Function of torque and importance and ability to calculate torque for given parameters
Students can know the different types of losses in dc motor	
Losses	Ability to find efficiency of a different types of dc motor
Efficiency and problems	

UNIT-V (Transformers \& THEIR PERFORMANCE)	
Principle of operation and construction	Design and Construction of the transformer and operation
Losses	Students can able to know the different types of losses and their role
Practical and ideal transformer	Ability to find difference between ideal and practical transformer and their importance
Transformer Tests	Ability to determine the losses i.e core losses and copper losses
Efficiency	Ability to find the efficiency of transformer for different loads in real time applications
Regulation and problems	He can know what is regulation and ability to solve regulation problems and importance
Synchros	Helps the students to analyse the basic concepts of DC machine in the working of some special AC machines

Stepper Motors	Helps the students to analyse the basic concepts of DC machine in

7. Brief notes on the importance of the course and how it fit into the curriculum

The course introduces the basic concepts of transient analysis of the circuits, the basic two-port network parameters and the design analysis of filters and attenuators and their use in the circuit theory. The emphasis of this course is laid on the basic operation of the DC machines and transformers which includes DC generators and motors, single-phase transformers.

8. Prerequisites

Engineering Physics, Mathematics

9. Instructional Learning Outcomes:

Outcomes

On successful completion of this subject, students will be able to:

1. Understand working principles of electrical devices and circuits.
2. Understand advantages \& applications of electrical devices and circuits.
3. Understand design and analysis of electrical circuits.
4. To apply the operating knowledge of major electrical devices like DC generator, DC motor, Transformers, Syncro transmitter \& receiver and advanced filter and attenuator circuits to identify, formulate \& solve Engineering problems by making use of modern software/hardware tools.

10.Course mapping with PEOs and Pos:

a) an ability to apply the knowledge of Mathematics, science and engineering in Electronics and communications	
b) an ability to Design \& Conduct Experiments, as well as analyze \& Interpret Data	V
c) an ability to design a system, component, or process to meet desired needs with in realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability	V
d) an ability to function on multidisciplinary teams	V
e) an ability to Identify, Formulate \& Solve problems in the area of Electronics and Communications Engineering	\mathbf{V}
f) an understanding of professional and ethical responsibility	
g) an ability to communicate effectively	

h) the broad education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context	
i) a recognition of the need for, and an ability to engage in life-long learning	V
j) a knowledge of contemporary issues	V
k) an ability to use the techniques, skills, and modern engineering tools necessary for engineering practice	

Relationship of the course to the program educational objectives:

1. Domain knowledge: Graduates will be able to synthesize mathematics, science, engineering fundamentals, laboratory and work-based experiences to formulate and solve engineering problems in Electronics and Communication engineering domains and shall have proficiency in Computer-based engineering and the use of computational tools.
2. Professional Employment: Graduates will succeed in entry-level engineering positions within the core Electronics and Communication Engineering, computational or manufacturing firms in regional, national, or international industries and with government agencies.
3. Higher Degrees: Graduates will succeed in the pursuit of advanced degrees in Engineering or other fields where a solid foundation in mathematics, science, and engineering fundamentals is required.
4. Engineering citizenship: Graduates will be prepared to communicate and work effectively on team based engineering projects and will practice the ethics of their profession consistent with a sense of social responsibility.
5. Lifelong Learning: Graduates will recognize the importance of, and have the skills for, continued independent learning to become experts in their chosen fields and to broaden their professional knowledge.
6. Research and Development: To undertake Research and Development works in the areas of Electronics and Communication fields.

11.Class time table

To be attached

12: Individual TIME TABLE

To be attached

13. Lecture schedule with methodology being used/adopted

Unit wise Summary

$\begin{gathered} \hline \text { S.N } \\ \text { o. } \end{gathered}$	$\begin{gathered} \text { Uni } \\ \text { t } \\ \text { No. } \end{gathered}$	Tota I no. of Peri ods	Topics to be covered	Reg / Additio nal	Teaching aids usedLCD/ OHP/BB	Rema rks
1	1	15	Introduction, DC Excitation RL Series ckt (DC) RC series ckt (DC) RLC series ckt (DC) Numerical problems Laplace Transformation Problems Additional topic tutorial Unit revision, Objective questions, Assignment	Regular	BB	
2	II	15	Two port Networks Impedance parameters, problems Admittance Parameters, problems Hybrid Parameters, problems ABCD Parameters, problems Conversion of parameters, problems Condition for symmetry and reciprocity Parallel) Cascade parameters configuration, Image Additional topic tutorial Numerical problems, Objective questions, Assignment	Regular	BB	
3	III	15	.Filter Introduction, Classification of Filter's . Filter Networks, Pass and stop band . constant k low pass filter, High pass filter M-derived T and Pi section filters .Band pass filter Band Elimination filter . Numerical problems, Symmetrical Attenuators .T-Type Attenuators	Regular	BB	

14. DETAILED NOTES

Unit - 1
Tronsent Aralyos (Response of RL \& RCARLC Ercuiteinsene)
A Netuak in whech branch current and Nodevoleges are not ohanging woth respech to tome es saxd to be steoty stope. In othes words; if the volfafes ond currents the circut ase heving o corstont Amplitude and freponcy th roufotithe tme mexvat Of these prometer (curvent \&volfars) measusemant, then such a Netwrk is said to be in steed Stale.

Wheneres a network is swituad from one condition to anothes ky change in appled votrofe on by change in one of the arcut devorts, in a petiod of tme, branch currente andvoliges chanfe faren their formex values to new crua. This time inteust is Cutted transtenperod The tespanse or) ortfut of network dusing transtimpesod os coled trangent respanse of Netuerke

After: the transtion period, if the notursk condias is not destuebed, then the notbork ations Skedy stote a infintetima

The appliction If lawt to the Neturot contarney enoxgy storing elemsts such as indudor and capacitor, pesult jo as difutual
 and potucuts fund Th The compementay function sepresots transent poet
 Stedy slate poit of solution.

Intial conftions of the elewants in the netionth muit be

Mathemencal Backgrand of Diffeentid Equations:-
$n^{\text {th }}$ orader dffecticu epectron esprestod os

$$
o_{0} \frac{d x}{d t^{n}}+o_{1} \frac{d^{n} 1}{d t^{n-1}}+\cdots o_{n-1} \frac{d t}{d t} o_{n} x-v(t)
$$

Unese $a_{0} \alpha_{1, n} a_{n-1} a_{n}$ are corstanti.
 germedy cusunt obpendent on the getr, opplest.
 Vatueng cabd Input 6e Foscong fundrn oo mactatidno

The schition of the eppoter os chet as the respense athe Sutem

$$
\left|a_{\mathrm{a}} d \mathrm{dt}, 4 a^{1} /(t)=v(t)\right|
$$

 difternat expution.
 and w Sthe form,
 wheh inveltes the turctum v(t) which is inoppendent vosute of the yistom. It us of the form,

Gened and Peticulas Selutime:
1 omogenews Fruation

$$
a_{0} \frac{d(t)}{d t}+\alpha_{1} x t=0
$$

To Find solution of k (t),

$$
\begin{aligned}
& \rightarrow \alpha_{0} \frac{d x t}{d t}=-\alpha_{1}(t) \\
& \frac{d i(t)}{d t}=\frac{a_{1}}{a_{0}} d(t) \\
& \text { By Irtegoling the equation } \\
& \left.\int \frac{d x t}{d t}(t)=\int \frac{a_{0}}{a_{0}} d t\right)+k_{1} \text { whene } k_{1} \text { is Infodencintut } \\
& 2 \ln (i)=\frac{-a_{x}}{a_{t}} t+1 \\
& \Rightarrow \quad \ln (t)=\ln _{n}\left[e^{-\frac{a_{i}}{D_{0}} t}\right]+\ln ^{k} \text { where } k_{i}=\ln _{n} k \\
& \text { As we Kuas } \quad \operatorname{lo} x+\ln y=\ln x y \\
& \Rightarrow \ln (0)=\ln \left[k \cdot e^{-\frac{a_{1}}{a_{0}} t}\right] \\
& \Rightarrow \quad x=e^{-a t}
\end{aligned}
$$

 evalusted, fas which the solution solled potitular solution.

$$
\Rightarrow \quad 3 * a_{2}
$$

- Partioublat struicm is $\Rightarrow x=\alpha_{2} e^{\mathrm{g} t}$

Non Homogenere Eyuthom
Consdex an Nomegerecus equation of frst orded,

$$
\frac{d}{d t}+P t=\alpha
$$

Tus ef mog be ottaned by seasengy the varudesand dinng
 Q trime
 Eycation by intextin factor et.
We get,

$$
e^{p t} \frac{d u}{d t}+P t e^{P t}=Q e^{P t}
$$

A we trew Let, $\quad x-i$ \& $y=e^{P t}$

$$
\quad \frac{d}{d t}\left(i e^{p t}\right)=e^{P t} \cdot \frac{b_{t}}{d t}+1 e^{p t} P
$$

Thas we hane $\frac{d}{d t}\left(e^{p t}\right)=Q \cdot e^{p t}$
Tategaling buth sides,

$$
\begin{aligned}
& A e^{P t}=d A^{P t} d t K \\
& \therefore \quad e^{-R t} \alpha-e^{P t}+e^{P t} \text {, }
\end{aligned}
$$

A Gequal stulon con be ortton os,

$$
d=x_{p f} t_{c} \quad \lambda_{t}-\text { complemed } y \text { vitple }
$$

xpI $\quad{ }^{2}{ }^{2}$ ontten as skemetute value \&
L_{F} s duled transenf partam

Intider enctiteng to Networt:
We sume the ot refence tome $t=0$, netwerk unfich a chaged by sutthiry octron. Assume the suathes pperte in zerotime The netwirk conditans at this nestant are catled entiol condtions innetwerk. To ditugust setween tu time oux beree and justmmedurly ffer the condion

Thus, $t\left(C^{-}\right)$is the mstant t wheh the condthon ol newerk net yet chang, b 4 is obout to betrango, whe $1\left(0^{+}\right)$. t the tobot at which

Intul condtions in the network depende on past on bustey contlin. befeg int $t=0$. These condicre at $t=0$ we gen by voltere ofess coputot and curont trougt inductore
Intrat rondtions m Elemerts -
Restor:
Fox resistor havry value R, the velathon betwreenappled voltape and resulting current is given by

$$
[V=X R]
$$

 charges instantansistl if appled voltage chenges instantanecuefor. This is because, these is no storage of enexy in resistor.
2) Inductor.

The Relation between current flowing through the inductor and voltage across it of gen ly.

$$
V_{1}=L \frac{d i_{L}}{d t}
$$

If DE curcut is pased throgh inductor, $\frac{d i}{d t}$ become zero, hance Voltage across inductor, V_{L} also becrmes zero. Thus, as fos as de quantities ave caradexed, shaly state, inductor acto as a shotarait current in an inductor prt vottaje can be expreased as

$$
i_{L}=\frac{1}{L} V_{L} d t \text { Hene Limesto dededod by past history }
$$ ie. $-\infty$ to (0)

If we cons ide that suatching take place of $t=0$, we con spf limits into two intervale as $-\infty$ to \& ot. 0 .
Note 0^{-}\& the instant Just before surithing acton takes pace, of is the instant just offer suiting action takes place.

Hence

$$
A_{1}=\frac{1}{L} \int_{-\infty}^{t} v_{1} d t
$$

$$
\Rightarrow \quad i_{1}=\frac{1}{i} \int_{-\infty}^{\infty} v_{L}^{\infty} d t+\frac{1}{L} \int_{0}^{t} v_{L} d t
$$

Initial condition of is $(1, t o))$

$$
\Rightarrow i_{k}=x_{L}\left(0^{-}\right)+\frac{1}{L} \int_{0}^{t} v_{L} d t
$$

$A^{4} t=0^{+}$

$$
\lambda_{1}\left(0^{+}\right)=\lambda_{i}\left(0^{-}\right)+\frac{1}{2} \int_{0^{+}}^{0} v_{L} d t
$$

As we assumed that transient period is zeros integration ${ }^{\circ} 0^{-t}$ to ar zeta.

$$
i_{1}\left(0^{+}\right)=i_{1}\left(0^{-}\right)
$$

Thus in an inductor "current cannot dinge instantaneously" current in the inductor before and offer switching aton is Same: At the time of sutching, Voltage across inductor is vdently as at (time interval) is zero. Thus at the time of switching, inductor acts as open orcult: while in steodystate at $t=\infty$, it out an start cracute, If inductor carves an initial current of Defoe switching actors. then at instant $t=0^{+}$, At ads as a constant current sauce of Value 0 ts, while in steady state ot $t=\infty$, it act os o shot carat aches a eusient souse.
3) Capacitor-

Relathom betwer current hrogh eopactos vottape atrose if is givenby

$$
x_{c}=c \frac{d v_{c}}{d t}
$$

if oc volige s oppled topatos, $\frac{d V}{d t}$ becrries zese, (VCostont wrt tin) Hence cureent throngt copoctor x berurnes Zens. Thus Capactor act os open circut os fatas dequatite as comsiderad

Vatege acrobs o copacior moy be eaprezed as

$$
\begin{aligned}
& V_{c}=\frac{L}{c} X_{c} d t \\
& V_{c}=\int_{-\infty}^{t} d d t \\
& \rightarrow V_{c}=\frac{1}{0} \int_{-\infty}^{0} A d t+\frac{1}{c} \int_{0}^{t} \mu_{c}^{t} d t
\end{aligned}
$$

Limits moy be writen frompast history ers $-\infty$ to t

Initid vottage or copactor $V_{C}(\bar{O})$

$$
\therefore \quad V_{c}=V_{c}(0)+\frac{1}{c} \int_{-0}^{t} x_{c} d t
$$

At $t=\theta^{+}$

$$
V_{c}(\theta)=V_{C}(0)+\frac{1}{c} \int_{0}^{\theta^{+}} d<d t
$$

As the tramsert perod is zexotinteytion from 0 to 0^{t} zeso

$$
\quad \quad V_{c}\left(0^{+}\right)=V_{c}\left(0^{-}\right)
$$

Thus voltage accost copacilon comnt change instantanesusty. At t-0' (for ondaged capacior) capacibo orts short arait. once it get chaged of $0, \infty$, in steadystata, f ads as open circut

Tabulated Summany:-
clement

Sehavisue os $t \rightarrow \infty$ ie sleady state:

Poblems:
(1) In the notuoxk Shoum. Switch is elesed ot $1=0$ uith the capacitor uncharged Find the volues of i, $\frac{d t}{d t}, \frac{d^{2} x}{d t^{2}}$ at $t=o^{+}$, for dement, vetues as folhous, $V=100 \mathrm{~V}, \mathrm{R}=1000 \mathrm{~s}, \mathrm{c}=1 \mu \mathrm{~F}$

Solthon At $t=0$ Swhtch s oper
Herce of in the eircut is zero. Also as the coprictor es unchaged. So votrap ocrass sopacilor is zeso.

$$
\begin{equation*}
V_{c}\left(\sigma^{-}\right) \Leftrightarrow 0=V_{k}\left(0^{+}\right) \tag{1}
\end{equation*}
$$

For $t \geqslant 0^{+}$, switch k is ctosed.
Apleing SVL^{2},

$$
A \cdot R+\frac{1}{c} \int_{-\infty}^{t} x d t=v
$$

$$
\Delta-R+\frac{1}{c} \int_{-\frac{\infty}{1}}^{0} i d t+\frac{1}{c} \int_{0}^{t} n d t d V
$$

Initral voltag on copacitor=0

$$
\begin{equation*}
\Rightarrow \quad i R+\frac{1}{c} \int_{0}^{t} d t=0 \tag{2}
\end{equation*}
$$

At $1-0^{+}$, equation becumes

$$
\begin{array}{r}
1\left(0^{+}\right) \cdot R+\frac{1}{C} \int_{0}^{0}+d t \\
\frac{0}{0}\left(0^{+}\right) \cdot 1000+0-100 \\
1\left(0^{+}\right)
\end{array}
$$

Now Differciating ep (2) wr t t,

$$
\begin{equation*}
R+\frac{d}{d t}+\frac{1}{c} i=0 \tag{3}
\end{equation*}
$$

At $t-0^{+}$eqjuation becames

$$
R \cdot \frac{d}{d t}\left(\sigma^{+}\right)+\frac{1}{c} 1\left(0^{2}\right)=0
$$

by Substithy volue, $\quad 1000 \cdot \frac{d i}{d t}\left(0^{+}\right)+\frac{1}{1 \times 10^{6}}(0 \cdot 1)=o \Rightarrow \frac{d t}{d t}\left(o^{+}\right)=-100$ Alec

Now diffexanating equetion (3) wrt t

$$
\begin{equation*}
R \cdot \frac{d^{2} t}{d t^{2}}+\frac{1}{c} \cdot \frac{d}{d t}=0 \tag{4}
\end{equation*}
$$

$A t=0^{+}$, equation (4) becomes

$$
\mathrm{R} \cdot \frac{\mathrm{~d}^{2}}{d t^{2}}\left(\mathrm{o}^{+}\right)+\frac{1}{\mathrm{c}} \frac{d t}{d t}(\mathrm{or})=0
$$

by Substibating Values,

$$
\begin{gathered}
1000 \cdot \frac{d^{2}}{d t^{2}}\left(0^{+}\right)+\frac{1}{1 \times 10^{-6}} \cdot(-100)=0 \\
1000 \cdot \frac{d^{2} x}{d t^{2}}\left(0^{+}\right)=\frac{100}{1 \times 10^{6}} \\
\Rightarrow \quad \frac{d^{2} x}{d t^{2}}\left(0^{+}\right)=10^{5} \mathrm{~A} / \mathrm{sec}^{2} \\
\therefore A t t=0^{+} \quad \lambda\left(0^{+}\right)=0.1 \mathrm{~A} ; \frac{d u}{d t}\left(0^{+}\right)=-100 \mathrm{~A} / \mathrm{sec} ; \frac{d^{2}}{d t^{2}}\left(0^{+}\right)=10^{E} \mathrm{~A} / \mathrm{sec}
\end{gathered}
$$

(2) The switch is closed ot $t=0$, find the value of,$\frac{d}{d t} \frac{d^{2} x}{d t^{2}} d t$. Assume initial current of haluctor is zoro.

Solutery At to swith is open. Hence cureat in circuit is zero.

$$
f(0)=0=l\left(0^{+}\right) \rightarrow 0
$$

- becouse chnelt though indute crowit chang wismeneoty
for $t \geqslant 0^{+}$, Suritch is closed.
Aptying kve.

$$
\begin{equation*}
A \cdot R+L \frac{d}{d t}=V \tag{2}
\end{equation*}
$$

At $t=0^{+}$, epatar beanes,

$$
x\left(0^{+}\right) \cdot R+L \frac{d}{d t}\left(0^{+}\right)=V
$$

by Substiluting the values,

$$
\begin{array}{r}
0 R+1 \cdot \frac{d t}{d t}\left(0^{+}\right)=100 \\
\frac{d u}{d t}\left(0^{+}\right)=100 \mathrm{~A} \mathrm{sec}
\end{array}
$$

Differnciating equation (2) wrt t

$$
\begin{equation*}
R \frac{d}{d t}+4 \frac{d^{2}}{d^{2}}=0 \tag{3}
\end{equation*}
$$

At $t=0^{4}$, epution (3) becumes.

$$
\begin{aligned}
& R \cdot \frac{d t}{d t}\left(0^{t}\right)+L \frac{d^{2} x}{d t^{2}}\left(0^{+}\right)=0 \\
& L \quad \frac{d^{2} x}{d t^{2}}\left(O^{t}\right)=-R \frac{d t}{d t}\left(0^{t}\right) \\
& \frac{d^{2} t}{d t^{2}}\left(0^{+}\right)=-\frac{R}{L} \frac{d t}{d t}\left(0^{t}\right)
\end{aligned}
$$

By Subshtutry the values,

$$
\frac{d^{2} x}{d t^{2}}\left(0^{+}\right)=\frac{-10}{1} \times 100=-1000 \mathrm{~A} / \mathrm{sec}^{2}
$$

3. At tsot,

$$
\lambda\left(0^{+}\right)=O A ; \frac{d^{2}}{d t}\left(0^{+}\right)=100 \mathrm{~A} / \mathrm{sec}^{2}, \frac{d^{2}}{d t^{2}}\left(0^{+}\right)=-1000 \mathrm{~A} / \mathrm{sec}^{2}
$$

Transient Respanse of Sesues R-L crcust for DC Frcitation
The inductor in the sesies R-L circut maybe inctilly cheige co unchooged. A series $R 2$ cricut in which an active Sovice is inlordiced offer trantion is colled driven series R L circut A series R-L circuit jowhoh on active source is absent offes tronstron is called undriven se sorectree series Rearcuit.
Transient Response of Driven Sevies R-Lcircute:
too swith is opentor a longtme. Experion foo cursuet thigh in ductor piondes the (randient Resperge of Reles cisout. Let the intideurrent throof inductor be dentes
 as Io. At $t=0$ sutch is open.
As valtage is not appled to the sexues R-Larout, curvent in the crumt will be zers But as we abredy know that current in the inducto docenat chenge instantaneondy,

$$
x(0) \Delta I_{0}=0=t\left(0^{+}\right)
$$

For all $t \geqslant 0^{+}$. Switch is clased,
Aplying kut,

$$
\begin{array}{r}
-R x(t)-L \frac{d(t)}{d t}+v=0 \\
R x(t)+\frac{d(t)}{d t}=v
\end{array}
$$

Dviding the eq with R,

$$
\cdot \frac{L}{R} \cdot \frac{d(t)}{d t}=\frac{V}{R}-1(t)
$$

by seporating Vountlexs.

$$
\begin{equation*}
\frac{d(t)}{\left.\left[\frac{V}{R}-1 t\right)\right]}=\frac{R}{L} \tag{2}
\end{equation*}
$$

Integeting both the sides with corvesponding vasiables,

$$
\begin{align*}
& \text { The sifes with corresponding variables, } \\
& -\ln \left[\frac{1}{R}-k(t)=\frac{R}{L} \cdot t+K-(3) K-a b l l a y\right. \text { contar } \\
&
\end{align*}
$$

$$
A t+0,4+=0 ;-\ln \left[\frac{\mathrm{V}}{R}-0\right]=\frac{R}{L} \times 0+K \Rightarrow K=-\ln \left[\frac{V}{R}\right]
$$

Substbute the value is n,

$$
\begin{aligned}
& \operatorname{sn}\left[\frac{V}{R}-1(t)\right]=\frac{R}{L} \cdot \ln \left[\frac{V}{R}\right] \\
& \ln \left[\frac{V}{R}-1(t)\right]-\ln \left[\frac{V}{R}\right]-\frac{R}{L} \cdot t \\
& \ln \left[\frac{\frac{V}{R}-l(t)}{R}\right]=\frac{R}{R} \cdot t
\end{aligned}
$$

Applyy Antions.

$$
\left[\frac{\frac{V}{R}-x(t)}{\frac{V}{R}}\right]=e^{-\frac{R}{R} t}
$$

$$
\begin{equation*}
\Rightarrow \quad l(t)=\frac{V}{R}-\frac{V}{R} \cdot e^{-\frac{R}{R} t} A \tag{5}
\end{equation*}
$$

 olppined by apluing KOL to the deriven sories RL Graut.
Abore responge is a combination of steadystate response (forced respense) and transient reapense (Naturel respanse)
Forced responge is doneted by $\frac{V}{R}$ and us ouct froingfunctom ie, Apliedvalta, V This is aloc cilled as the zerostate astery state responst
Transeent Reapense is dendel by beam $\frac{V}{R} e^{-\frac{R}{L}}$ in which 't is involved. This is a noturd responsc and alro colled as zers input respange.
From figue, t is clens that, curient increses exponentially. wrt time.
This rising current produces resing flix, which induces emf in the cot
Accoding to lenzs bur, the self induced emf
 opposes the Hop of current Becunse of tha propety, current in the col toes not reach it moxinum value instantoneordy.
From the gree, curut rises to $p(0.632$ fomgevalue) in stealy state.
The time required for the cussent to react this value is edled as time carstant of given R-cercut It is donend by τ.

$$
\tau=\frac{L}{R} \sec
$$

To determine the significance of τ, substhe $T=T, 2 R, 4 \tau, 6 \tau$,

$$
\begin{array}{ll}
A t=T & \quad(t)=0.632 \frac{V}{R} \\
t=2 \tau & \quad(t)=0.6646 \frac{V}{R} \\
t=4 x & \quad(t)=0.9816 \frac{\mathrm{~V}}{R} \\
t=6 x & \quad 1(t)=0.9975 \frac{V}{R}
\end{array}
$$

It as cleas from the above values that current rises to fint t in lesstime.
 Ideally currect veaches to sheady state infinite time, fut proctcally it reoches Steadystat current value by $t=62$ © $8 x$.
voltoge across madudo is

$$
v_{1}(t)=\frac{d i c t}{d t}
$$

by subselinting values of 1 its from equation (s)

$$
\begin{aligned}
& V_{1}(t)=t \frac{d}{d t}\left[\frac{v}{R}\left(1-e^{\frac{k}{L} t}\right)\right] \\
& \left.V_{1}()=\frac{\left[\frac{d}{d t}\left(\frac{v}{R}\right)\right.}{0}-\frac{d}{d t}\left(\frac{V}{R} \cdot e^{-R t}\right)\right] \\
& V_{L}(t)=x\left[-\left(\frac{v}{R}\right)\left(\frac{x}{x}\right) \cdot e^{\left.-\frac{R}{x} t\right]}\right. \\
& \therefore V_{L}(t)=V e^{-4 \cdot k}
\end{aligned}
$$

Voltaje acrose Rosistol is given by,

$$
\begin{aligned}
V_{R}(t) & =R(t)=R\left[\frac{V}{R}-\frac{V}{R} \cdot e^{-\frac{L}{L}}\right] \\
\Rightarrow V_{R}(t) & =V-V \cdot e^{\frac{R}{L} t}=V\left(1-e^{\frac{R}{L}} t\right. \text { v/t }
\end{aligned}
$$

curvent thooug inducto ineres exporentially Volloge across resistos albo incrien Expenditly Lut Voltige acress tidudtor decreater onparifly,
When the current reaches it sheoly state value at infinte true, the volloge acrots inductor also reaches its stealy stale value te, zoro. Thusinstedy state as voltafe acrus inductos es zero, it acts as a short arout.

Considering tho seres RL sircut, let we arsume thet inducter caxies
 Howigh inducter is given ty

Expressin fre voltag gencutrd ocries imauctor,

$$
V_{1}(t)=\left(v-I_{0} R\right) \cdot e^{\frac{h}{k}} \quad v
$$

Transient pesperue 3 $11) 14(f)$ dith intudhs congurg sarom nitide cuacent

The obwe ceporse calle Zerostaterionse. 3t is a responce to non-zeso Input to a orrut with zero initid conditions. Also its aprivencocuit:

Iransent Response of Souse Free (o) Unduiven Beries RLCrcuct.
Consides o sesues Rt excute,
AO With sutch closed inituoly for verghgtume before tronsition It marese that the netuxolk befoce transition is in stediy state. 30 inductor
 cets stert arcuit.
$\therefore \quad A t \quad A=0^{-} \quad \lambda(0)=I_{0}=\frac{V}{R}=A\left(0^{+}\right)$
For dl $t \geqslant 0^{+}$switch is moved to (b) postion,
Now the Netwok is withot ary oxcitation el active sovice Hence suck a crrcuit is callod sourofreo s) undaven orcuut. As the. Motal stredy state condiony distrobed nowts indedo Is not Shotcircuited in thes ase.
Appying kuly

$$
\begin{aligned}
-R+(t) & -\frac{d i(t)}{t(}=0 \\
& t(t)=\frac{L}{R} \frac{d(t)}{\Delta t}
\end{aligned}
$$

Seperator vasulles, $\frac{d i(t)}{d(t)}=\frac{-R}{L} d t$

Integrating both the sides urt correpond voulsles,

$$
\ln (x)=\frac{G}{L} t+k
$$

Where 1-axitary enstant
Find using initial conttion values,
At $\mathrm{E}=0, \quad \mathrm{~L}(\mathrm{t})=10$

$$
\Rightarrow \ln \left(I_{0}\right)=\frac{R}{1} \times \phi+k \Rightarrow \quad k=\ln \left[I_{0}\right]
$$

by substiting K value.

$$
\begin{aligned}
& \ln (t)=-\frac{R}{L} t+\ln \left[I_{0}\right] \\
& \Leftrightarrow \ln [(t)]-\ln \left[I_{0}\right]=-\frac{B}{L} t \\
& \ln \left[\frac{1 \alpha)}{I_{0}}\right]=-\frac{B t}{L} t
\end{aligned}
$$

by Antig.

So it is evident that cussent through inductor exponentially decricases.

$$
\Rightarrow \quad i(t)=I_{0} e^{I_{0} t} \Rightarrow \lambda(t)-\frac{V}{R} e^{\frac{R}{2} t} A
$$

At Foint P on the graph, the cursent value is $(0,368)$ times is mesomum whus. The chavderith: Of decey es detesined by the values of $R \& L$.

$$
\Leftrightarrow \quad \pi=\frac{L}{R}
$$

for $t=r, i(t)=I_{0} e-(0.367 g)_{0}$

For the atone values, it is cleas that cussent decreases bapdy to oosts bmes initial maxmum yeluse overfide r. Then vile of diany slows dewn and reches stedytyte of $t=62$ cosz.

$$
\begin{aligned}
& V_{0}(t)=1 \frac{d}{d t}=i \frac{d}{d}\left[x_{0} e^{\frac{k}{2}}\right] \neq I_{0} \frac{k}{k} e^{\frac{R}{L}} \\
& \Rightarrow v_{N}(t)=-I_{0} R e^{E t}, \quad \text { But IoRz } \\
& \Rightarrow N_{1}(t) \div-e^{\left.-\frac{R t}{2} \right\rvert\,}
\end{aligned}
$$

Transient Response of Sesies BC circuat for DC Excitationc:
In The scries K C oraut, cappato may be nitially choged ay unchaged. A we andlyse them seves RC crcuit and undrivenes Sowice free Seres BC circuit, whe obtan the solution for each case

Trunsient Respanse of Driven sevies RC Circuit:
consdes a sesies RC crait which s having swita inhally gpen fos Very long time at tas it is closed.
At $1=0$ Switch is open.

$$
\therefore V_{c}\left(0^{+}\right)=v_{0}=0=V_{c}\left(0^{+}\right) \rightarrow 0\left[{ }^{c}\right. \text { (a) }
$$

For all $t \geqslant 0$ Swleh s is closed.
Apdy KUL,

$$
\begin{gather*}
R(t)+V_{c}(t)+V=0 \\
R(t)+V_{c}(t)=V \tag{2}\\
R(t)=c \frac{d V_{c}(t)}{d t} \\
R C \frac{d V_{c}(t)}{d t}+V_{c}(t)=V \\
R C \frac{d V_{c}(t)}{d t}=V-V_{4}(t)
\end{gather*}
$$

Seperating laviables.

$$
\begin{equation*}
\frac{d v_{c}(t)}{\left(v-v_{(}(t)\right.}=\frac{1}{R c} d t \tag{3}
\end{equation*}
$$

Integating both sides wot coresponding vavoles,

$$
\begin{equation*}
-\ln \left(v-v_{E}(t)\right)=\frac{t}{R C}+k \tag{4}
\end{equation*}
$$

To find K, intral condetions, $A t T=0, v(t) P 0$

$$
\begin{equation*}
-\ln (v-a)=\frac{\theta}{R C}+k \Rightarrow k=-\ln (v) \tag{S}
\end{equation*}
$$

Subshluting $K_{\text {s }}$

$$
\begin{align*}
& -\ln \left(u-v_{c} c\right)=\frac{t}{k^{c}}-\ln (v) \\
& \ln (v V \theta)-\ln (v)=-\frac{t}{R C} \\
& \ln \left(\frac{V-V_{C} t}{V}\right)=\frac{t}{R C} \\
& v-v_{c}(t)=v e^{-\frac{1}{L C} t} \rightarrow v_{c}(t)-v-v e e^{-\frac{1}{c c t}} v
\end{align*}
$$

Antlo:

Eq 6) the solution of first order differential equation for driven serial or value of t can be beluevy $t=0$ to $t=\infty$ (Positive value) obtain $\mathrm{V}(t)$.

$$
\begin{align*}
d(t): x_{c}(t) & =c \cdot \frac{d(v(t)}{d t} \\
& =c \cdot \frac{d}{d t}\left[v-v e^{\frac{t}{R^{c}}}\right] \\
(t) & =1\left[0-v-\frac{1}{R C} e^{\frac{t}{d x}}\right] \\
i(t) & =\frac{v}{R}, e^{-\frac{t}{R}} A \quad \rightarrow-\rightarrow \tag{7}
\end{align*}
$$

$$
r=R C \mathrm{sec}
$$

$$
\begin{aligned}
& \text { For } t=V \quad V(t)=V-V e^{-1}=0.632 V \\
& t=27, t(t) v-v e^{-2}=0.8646 \mathrm{~V} \\
& t=4\left(, V(k)=v-v e^{4}=0946 V\right. \\
& 166, V_{0}(t)=v-v e^{-6}=0975 V
\end{aligned}
$$

From the pope values, t is clear that at $t=c$, voltage across capacitor of ply rise to 0.63 z ties steady skate value, then rote of increase slowdown.

Transient Resfense of Sousce Free es Undriven Seres RC cricut
Tnitily at $t=0$ suilct is in Qutition At $t=0$, Sutich is mored to (b) Pestion Heve we wit find the dischege of. copabor throyf resitor expusul ats Vollage ocress copartor as onction t tmett

\therefore At $t=0^{-}$suntch is postion (a) Network in stectystates $c \rightarrow 0 . c$

$$
\begin{equation*}
V_{c}(0)=V_{0}=V=V_{c}\left(0^{+}\right) \tag{1}
\end{equation*}
$$

For $141 \geq 0$ surth is maved to pouton (b)

 By pplying kv,

$$
\begin{align*}
& -L(t) R+v_{c}(t)=0 \tag{2}\\
& R C \cdot \frac{d v_{f}(t)}{d t} a=-v_{c}(t)
\end{align*}
$$

$$
i(t)=c \frac{d v_{(}(t)}{d t}
$$

Seperdingraroles.

$$
\frac{d V_{c}(t)}{U_{c}(t)}=\frac{-1}{R C} d t
$$

Trlegenting on both sides withrespect to concespanding veriches

$$
\begin{equation*}
\ln \left[V_{c}(t)\right]=\frac{-t}{R C}+k \tag{3}
\end{equation*}
$$

find k, At $-0, V_{c}(t)=6$

$$
\begin{equation*}
\ln \left[V_{0}\right]=\frac{0}{R c}+k \Rightarrow k=\underset{V_{0} H}{\ln \left[V_{0}\right]} \tag{4}
\end{equation*}
$$

Sutstiluting K \ln (3),

$$
\begin{aligned}
& \ln \left[V_{c}(t)\right]=\frac{t}{R C}+\ln \left[v_{0}\right] \\
& \ln [u(t)]-\ln \left[v_{0}\right]=-\frac{1}{R c} \\
& \ln \left[\frac{V_{6}(t)}{V_{\rho}}\right]-\frac{t}{R c} \\
& \left.V_{0}(t)=V_{0} e^{\frac{t}{k c}} V_{o l t}\right]
\end{aligned}
$$

Toke Antike?

Foxer, $\left.\mathrm{V}_{\mathrm{c}} \mathrm{e}\right)=0.368 \mathrm{~V}_{0} \quad t-42, \mathrm{~V}(\mathrm{t} .0 .013,3 \mathrm{~V}$

$$
42 r v_{0} 0=0+\left.353 \mathrm{~V}_{0}\right|^{t}, V_{1} \theta=0.0024 \mathrm{~V}_{0}
$$

Transient Response of Serues $R-C-C$ Circut fer DC Exctation:-
In Sevey RLC circuit as two enegy story elements ose presol, when we apty KVL, diferentul eqpation $\frac{7}{}$ Second oeder conbe oflained. - Consider a seaves RLC circult. At teo, Swich is open.

$$
\begin{align*}
& i(0)=0=\lambda\left(0^{+}\right) \\
& V_{k}(0)=0=v_{c}\left(0^{+}\right)
\end{align*}
$$

For all $t \geqslant 0^{\circ}$ switch is closed.
Aplying KVL:

$$
\begin{equation*}
\lambda(t) \cdot d+\frac{d i(t)}{d t}+\frac{1}{C} \int_{-\infty}^{1} d(t) d t=V \tag{3}
\end{equation*}
$$

spliting the limite,

$$
(t) R+L \frac{d \alpha}{d t}+\frac{\frac{1}{c} \int_{-\infty}^{0}(t) d t+\frac{1}{c} \int_{0}^{t} x(t) d t}{\text { Sinthatvatige (za) }}=v
$$

$\left.d(t) R+L \frac{d i t}{d t}+\frac{1}{C} \int_{0}^{t} d t\right) d t+V \rightarrow$ Intgrodffentil equation diffexncioting bolt sides wit t,

$$
\begin{align*}
& L \frac{d^{2}(t)}{d t^{2}}+R \frac{d(t)}{d t}+\frac{l(t)}{c}=0 \\
- & \left.\frac{d^{2} d t}{d t^{2}}+\frac{R}{C} \frac{d(t}{d t}+\frac{1}{c} d t\right)=0 \tag{4}
\end{align*}
$$

Ey\& Indicates sccond edes diffiented expation foe which solution con be oftrined by gety chareterstac ouxdlay efotum by refleing $\frac{d}{d t}$ wh $s \in \frac{d^{2}}{d d^{2}}$ with s^{2}.

$$
\Rightarrow \quad s^{2} \Delta(t)+\frac{R}{L} s(t)+\frac{1}{L}(t)=0
$$

The respones of crouit dpend on the nature of vots of the aunilloy youtem The foo roots che -

$$
s_{1,2}=\frac{\frac{R}{L} \pm \sqrt{\left(\frac{R}{L}\right)^{2}-\frac{4}{L C}}}{2}-\frac{R}{2 L}+\sqrt{\left(\frac{R}{2 L}\right)^{2}\left(\frac{1}{\sqrt{L C}}\right)^{2}}
$$

The following grantetes axe necessity to detcmene the respanse acodint netue ot rote.

$$
\frac{R_{c_{x}}}{2 L}=\frac{1}{\sqrt{L}} \Rightarrow\left[R_{d x}=2 \sqrt{\frac{L}{c}}\right.
$$

(2) Dampeng Reter (S) The ratio the indicotur of the ppestion from the corcuit to cuse osciltations in t resporse More the vatue of the rato. les the chatice of osciltation in the respense it is the rotur of actuct Restanse in the arcuit to the crithor restance deneted by gred (etter zota ($($)

$$
\xi=\frac{R}{R}=\frac{R}{2} \sqrt{\frac{L}{L}}
$$

(Natural freviency $\left(\sigma_{n}\right)$) If the domping $\$$ mode zere then the respime oscllates with natural frepueng without any opposioin swch a frepurigy ithen $\xi=0$ is called natured frepueng of oscilletiong.

$$
a_{0}=\frac{1}{\sqrt{L}}
$$

Using thesc values, the ood of the eption ne

$$
\xi_{1,2}=-\xi \omega_{0} \pm \omega_{n} \sqrt{\xi^{2}-1}=-\zeta \omega_{n}+j \omega_{n} \sqrt{1-\xi^{2}}
$$

Thus the response tetally dependunt on to values $\frac{B}{}$ \&
Let $\alpha=\xi \omega_{n}$ and $k g_{g} \sqrt{1-\xi^{2}}$
D2 \rightarrow ochal fretof orecllilins rexdarpes frevincy whing 0 we get us $s \omega_{n}$ (rotuad fere) Gereat solutern,

$$
\left[(t)=k_{1} e^{(\alpha+\omega) t}+k_{2} e^{(\alpha-\omega) t}\right]
$$

$$
i(t) k_{1}+k_{2} c^{L}
$$

 such cess sum coleos ovederrits

The responce takes the fom,

$$
a(t)=k_{1} e^{s t}+k_{2} e^{s, t}
$$

Tatulated Respenges foe eoch cose

Specifcturns from step Respense of Seconal oides craut-
Consoder an sround adoxtyytem what undestuped (s)) 13 excited by wnit step input.

$$
\Delta \theta=x_{s y} \frac{e^{-\xi D_{0}}}{\sqrt{-\xi^{2}}} \sin (9 t+\theta) \text { where } \theta=\tan \frac{\sqrt{-\xi^{2}}}{\xi}
$$

The remoning peet is tronsend poit which dies sut sfersmetrue. Such a resporise gisenas
(1) Deley Time (T) 8 If is the tro pepuired by the responge to couth 50% of th Stexdy stato value, in frat dtempt.

$$
T_{\alpha}=\frac{1+0.7 \%}{2 h} \text { seconds }
$$

(2) Rise time $\left(T_{r}\right)$ It is the thise repreved by the reyonge to x se from 10% to 70%
 of the final values.

$$
\left.T T_{r}=\frac{\pi-0}{\partial} \text { seond }\right]
$$

(3)Pek timel $\left(T_{T}\right)$ - At the time of frot overshat respunse acheveso peak. The fime at Which frot perkovethen occese as cilled Rek Tine

$$
T_{p}=\frac{\pi}{4} \sec d d
$$

 Pat overshest as callod majnitude 1 pek ovesfort.

$$
\left[\frac{1 / M_{p}}{} e^{\pi \xi / \sqrt{\xi^{2}}} \times 100\right]
$$

$$
\text { T. } 4
$$

Problems (Fax RL Ericit)
 At $t=0$, switch k sond obtain expressen for court in the corcut fx

 in the circoit reaches to v2A.
soly At too suitd \& sopen

$$
\left.\left(0^{-}\right)=0,0_{0}^{+}\right)
$$

For d $t \geqslant 0^{\circ}$, suth s s cosed.
By opplig kv.

$$
\begin{aligned}
& +8 x(t)+10 \frac{d+4}{d t}=12 \\
& \frac{\operatorname{sit}(t)}{d t}+0.8 x(t)=12
\end{aligned}
$$

 where $P=0.8 \&=12$;
The Soluthon foe sich an qquition asguen by

$$
x(t)=e^{p t} \int_{0}^{t} Q e^{p t} d t+k e^{p t}
$$

Substutung $p \&$ in cobere rquation,

$$
\begin{align*}
& \Delta(t)=e^{-0 . s t} \int_{0}^{t} 12 \cdot e^{0.8 t} d t+4 \cdot e^{-0.8 t} \\
& =12 e^{o s f}\left[\frac{e^{8 s t}}{\sigma}\right]_{0}^{t}+k e^{0 s t} \\
& =1.5 e^{0.8 t}\left(e^{0.8 t}-e^{\circ}+k e^{0 . g t}\right. \\
& \Rightarrow \quad d(\theta)=15\left(1-e^{-0.3 t}\right)+k e^{0.8 t}
\end{align*}
$$

कo find k, of teck ($)=0$

$$
\Rightarrow \quad 0=h s\left(1-e^{0}\right)+k, e^{0} \Rightarrow k=0
$$

Hence $1(t)=15\left(1-e^{-0.8 t}\right) A$

- At $t=0 \times 5 \sec , 1(t)=105\left(1-e^{(6.3)(025)}\right)=0.2715 A$

$\theta A\left(A(t)=2 A \quad 02=15\left(4-e^{0.84}\right) \Rightarrow t=201 \sec \right.$
(2) In the corcuit shoun, mitally subth apt to potion A felone bime, At $t=0$, suitch 42 moved porition B.find eqpesen fer cumed fet tro. frd
 current theeugh inductor Veras Time. sol.

At tho swith s as in pation A.

$$
1(0)=I=\frac{100}{30+2}=2 \mathrm{~A}=1\left(0^{+}\right)
$$

Forall $t \geq 0^{+}$switch maved to postion B
Hence Nehrok becuraes undenerg senes RL circut.
Notave

$$
\begin{aligned}
& 30 .(1)+9 \cdot 2 \frac{d t t}{d t}=0 \\
& 0.2 \frac{d t h}{d t}+30(1)=0
\end{aligned}
$$

 Whede $a_{0}=02, a_{1}-36$
stution for such epration xs

$$
l(t)=k \cdot e^{-a_{0} t}
$$

Sultating ano ko, $\quad x(t)=k \cdot e^{-\frac{30}{0.2} t}=k e^{-i s t i}$

find K, ot $t=0,1(\theta)=2 A$,

$$
\begin{aligned}
& =k e^{-k 000} \Rightarrow k=2 \\
H \quad x(t) & =2
\end{aligned}
$$

Now A ta66667msec) $4(t) \approx 2 e^{\left.450(666 \pi 1)^{3}\right)}$

$$
t=66667 \mathrm{msec}, \quad(t)=2 c
$$

$$
\text { At } t=133334 \mathrm{mec}, t(t)=2=e^{150(13334 \times 6)}=0.2706 \mathrm{~A}
$$

$$
\text { At } t=20 \mathrm{mec} \quad y \quad f(t)=2 e^{-10\left(20 \times 10^{3}\right)}=0.0795 \mathrm{~A}
$$

sol. A ted Swhth is opeo.

$$
V_{0}+0=0=V=V\left(o^{+}\right)
$$

For alt to ${ }^{\circ}$, sutch is dosod.

First Reducethe net work to Hevinary egruiden \& opfly kvL

$$
\begin{aligned}
& V_{4 k}-V_{\text {ec: }}=10\left[\frac{1 k}{9 k+1 k}\right]=3 V \\
& \pi_{h}=\left(9 k(1)+4 k=\frac{(9 k \times 1)}{(9 k+(k)}+4 k=4.9 k \rightarrow\right.
\end{aligned}
$$

Nos MPRYME

$$
\begin{aligned}
& \left.\quad(4.1 \times 0)^{-}\right) \lambda_{C}+V_{C}-1 \\
& \Rightarrow\left(4.9 \times 10^{-3}\right)\left(3 \times 10^{6}\right) \frac{d V_{t}}{d t}+V_{t}=1
\end{aligned}
$$

 $-e^{-08027 t} \int_{0}^{1} 68027 t^{6827}+k e^{60307 t}$ $=86.024\left[\frac{c^{6802 t}}{66 \operatorname{cost}}\right]_{0}^{6} \mathrm{~B}+e^{687 t}$

$$
\Rightarrow 1_{k} 1-e^{68 \cdot 22 t}+k e^{6827 t}
$$

$$
\begin{aligned}
& 0,1-e^{0}+k e^{\theta} \rightarrow \bar{k}=0 \\
& \Rightarrow V_{e}=e^{68-2+t} \text { Voles } \\
& \left.i_{C}\left(3-10^{-6}\right) \frac{d}{d t}(1-6+2)^{-6}\right) \\
& \rightarrow c_{c}=0,21 e^{6202 t} \mathrm{~mA}
\end{aligned}
$$

Assgrank raonem

$$
\begin{aligned}
& v_{c}(t)=20\left(1-e^{t}\right) V \\
& x_{0}+t=2 e^{t} A \\
& v_{k}(t)=20 \cdot e^{t} v
\end{aligned}
$$

 in the nelwork. At $\mathrm{H}=$, the Sutches opend. Find an eapresurn the current in the inductop, $y_{2}(f)$.

At $t=0$, sutch is clased a neturerk in in steatystate
Indulue act a shote circut while
 capocke act as opendircut.

$$
\begin{aligned}
& x_{2}(0)=I_{0}=\frac{V}{R}=\frac{100}{O}=x_{2}\left(0^{+}\right) \\
& V_{c}(0)=0=V_{c}\left(0^{+}\right)
\end{aligned}
$$

for all tsor, sulth aspened.
Aphying kuL to o dored poth.

$$
\begin{aligned}
& t \frac{d x}{d t}+\frac{1}{20 \mathrm{~km}} \int_{-\infty}^{1} \lambda_{t} d=0 \\
& \frac{d_{2}}{d t}+\frac{t}{20 \times \sigma^{6}} \int_{2}^{0} x_{2} d x+\frac{1}{20 \times \omega^{6}} \int_{0}^{t} a t=0 \\
& \Rightarrow \frac{\partial x_{1}}{\partial t}+\frac{1}{20 \times 0^{-6}} \int_{0}^{t}, \alpha=0
\end{aligned}
$$

Deferentoting wot t,

$$
\frac{d^{2} i_{1}}{d t^{2}}+\frac{1}{20 \times 10^{6}} i_{2}=0
$$

Lel

$$
S=\frac{d}{d t} \text {, Now } S_{2}^{2}+\left(50 \times 10^{3}\right) 1_{2}=0
$$

Root the thoverntion ase

$$
\begin{aligned}
& \text { The overextion ase } \\
& S_{1,2}=\frac{-\theta \pm \sqrt{0-40\left(50 \times 0^{3}\right)}}{2(0}=\frac{ \pm \sqrt{\left(200 \times 10^{3}\right)}}{2}
\end{aligned}
$$

$s_{1,2} \pm j(223.6)$ The rote of ep pecepal e inginaty.
sutums eyo s

$$
\begin{aligned}
& H_{p}(t) k_{1} e^{\mathrm{ft}}+\mathrm{k}_{2} e^{3 t} \\
& L_{2}(0)=k_{1} e^{+3(23,2 t}+k_{2} e^{-j(235) t} \\
& k_{2}(t)=k_{1}\left[\cos (2236) t+3 \sin (223 \cdot 6+]+k_{2}[\cos (224) t-j \sin (2236) t\right. \\
& k_{2}()=\left(k_{1}+k_{2}\right) \cos (22 b) t+1\left(k, k_{2}\right) \sin (\alpha 336) t
\end{aligned}
$$

Let $\left(k_{1}+k_{2}\right)=k_{3}$ and $\left(k_{1}-k_{2}\right)-k_{4}$

$$
\therefore k_{2}(t)=k_{3} \cos (223 m) t+j k_{4} \sin (223.0) t
$$

Find K_{3} \& KH_{4}.

$$
\begin{array}{rl}
\text { at } t & 0, f_{2}=10 \\
\frac{d_{2}}{d t}(0)+0-0 & \rightarrow \frac{d_{2}}{d t}(0)=0
\end{array}
$$

Substiving $t=0$.

$$
\begin{aligned}
& \lambda_{2}(0)=k_{3} \cos (0)+k_{4} \sin (0) \\
& 10=k_{3}(n)+k_{4}(\theta) \\
& k_{3}=10
\end{aligned}
$$

differnotiong evert

$$
\begin{aligned}
& \text { w8t } k_{3}[-\sin (2366)]+k_{4}[\cos (2336] \\
& \frac{d x}{d t}-6
\end{aligned}
$$

At $\mathrm{t}=\mathrm{o}$,

$$
\begin{gathered}
\frac{d_{2}}{d t}(0)=0 K_{3}[\sin (0]]+K_{4}[\cos (0)] \\
K_{4}=0
\end{gathered}
$$

Substoting values of $K_{3} \& K_{4}$,

$$
1_{2}(t)=10 \cos (2236) \quad A
$$

(2) obtan curser (t) fre 120 using time dimancpploch selat tors swith eopen.

$$
\begin{aligned}
& v_{1}(0)=0 \quad u_{1}\left(0^{+}\right) \\
& v\left(0^{+}\right)=0 \quad v_{c}\left(0^{+}\right)
\end{aligned}
$$

for all $t \geqslant 0^{+}$, swith es clofed.
Apity KVL,
diffenculy eo wit:

$$
10 \frac{d i}{d t}+05 \frac{d^{2} t}{d t}+\frac{k t}{4 t c^{6}}=6
$$

dival with o 5 on bith sida,
root 8 avilloy ey corthe found by,

$$
\begin{aligned}
& S_{1,2} \frac{-20 t \sqrt{(20)^{2}-4(1)(2 \times 18)}}{20}=\frac{-201,282836}{2}
\end{aligned}
$$

So boots are complox confafise wit ve xel pat

$$
\begin{aligned}
& i t 1=k e^{-\alpha x} \cos \omega_{2} t+k_{2} e^{-\alpha t} \sin a t \\
& \left.=k_{1} e^{00 t} \cos (44+18) E-k_{2} e^{0 t} \sin (14) 48\right) t
\end{aligned}
$$

A $t=0$, $1 日-\theta$

$$
\begin{aligned}
& \Rightarrow 0 \pm k_{1}, e^{\cos (0)+k_{2} \in \sin (0)} \\
& \Rightarrow k_{1}=0
\end{aligned}
$$

Now Equdien bexumas

$$
i(t)=k_{2} e^{30 t} \sin (14418) t
$$

dffercuting wat

$$
\begin{aligned}
& \left.\frac{d i t)}{d t} k_{2} e^{20}(14418) \cos 4448 t+\sin 44418 t(-10) e^{10 t}\right] \\
& \frac{d t}{d t}=k_{2} e^{10}(14418 \times \cos 14448 t-10 \sin 4440 t)
\end{aligned}
$$

At $t=0$,

$$
\frac{0 .}{d t}=k_{2} e^{-0}(41418 \times \cos 0-10 \sin 0)=k_{2}(\sin 13)
$$

Now the Thlogestifferiol beomes

$$
\begin{gathered}
10 x(0)+0.5 \frac{d+t}{d t}+\frac{1}{1 \times 10} \int x(0) d t+100 \\
0+0.5 \frac{d}{d}\left(0^{\circ}\right)+0=100 \\
\frac{d}{d t}\left(0^{\top}\right)=200
\end{gathered}
$$

epumg

$$
\begin{aligned}
& k_{2}(144 / 2)=200 \\
& \mathrm{~K}_{2}=0 \text { मिए }
\end{aligned}
$$

Transoem of Bric R, \& C comporme
(1) Resishe:

(2) Induate
(3) capactor:

$$
\begin{aligned}
& z(x)=\frac{V(t)}{I(t)} \\
& \min _{\rightarrow-1(3)} \\
& x=x(s)-1 \\
& y(s)=\frac{\partial s}{v(s)}-\frac{s}{R} \sigma
\end{aligned}
$$

boltarinus

$$
\begin{array}{r}
\rightarrow V(s)=s, L(s) \\
Z(s)=\frac{V(s)}{T(s)}=s L \\
X(s)=\frac{1}{z(s)}=\frac{1}{s L}
\end{array}
$$

Taking Linlace Tonfoom

$$
\begin{aligned}
& \begin{array}{l}
V_{0}(s)=\frac{1}{c}\left[\frac{1(s)}{5}+\frac{V_{c}(-)}{\rho}\right. \\
V_{c}(s)=\frac{I(s)}{5 C} ; Z(s)=\frac{V_{c}(\theta)}{I(s)}=\frac{1}{s c}
\end{array} \\
& S(x)=\frac{1}{Z(s)}=s C
\end{aligned}
$$

Adurtges of Stornain Neturork:-

 mpetonar con be combied eosly to obtan simpt foem of Networt.

 is clleses Laploce drmain neturik.

Laphe Trusfom Froblems
 Afte sterdy stente seoteh is eppereft
 sol. when swith e coses

$$
\mathrm{V}_{C}-5 V_{i} \times \frac{\mathrm{A}}{\mathrm{x}}=5 \mathrm{~A}
$$

At $1-0, \operatorname{seth}$ is tpened

$$
\therefore V_{f}(0)=S V A \quad(0)=5 A
$$

Aptong KHC_{3}

$$
\begin{aligned}
& 1 \text { dete }+x+6 R+\frac{1}{c} \int_{-\infty}^{t} x+0 \\
& \frac{d(t)}{d t}+(t)+\int_{-\infty}^{\infty} a(t) d t \int_{0}^{\infty}+\sqrt{\infty}=0 \\
& v 0^{-1}=5 v \text { but }-\sqrt{x} \\
& \therefore \frac{d(t)}{d t}+(t)-5+\int_{0}^{x} x+d x=0
\end{aligned}
$$

Taking lophe worsforms

$$
\begin{aligned}
& {\left[s T(s)-i(0)+J(s)+\frac{I(s)}{s}=\frac{5}{3}\right.} \\
& I(s)=\frac{5(s+1)}{\left(s^{2}+s+1\right)}=5\left[\frac{s+1}{s^{2}+s+\frac{1}{4}+1-\frac{1}{4}}\right]-5\left[\frac{s+1}{\left(s+\frac{2}{2}+(\sqrt{3})\right.}\right]=5\left[\frac{s+\frac{1}{2}+\frac{1}{2}}{\left(s+\frac{1}{2}\right)^{2}+\left(\frac{3}{3}\right)^{2}}\right]
\end{aligned}
$$

$$
\begin{aligned}
& V_{e}(t)=x(t) \times R=5 . e^{0.5 t}\left[\cos \left(\frac{\sqrt{3}}{2} t+0.57 .3 \sin \left(\frac{\sqrt{3}}{2} t\right)\right] v\right. \\
& V_{a}(t)=P \text { pecress } L+V_{p}(t)=L \frac{d d t}{d t}+V_{b}(t) \\
& \rightarrow V_{a}(s)-\left[S T(s)-10^{-}\right]+V_{b}(s)=S I\left(5-5+I(s)(S+1) I_{s}-5\right. \\
& \left.\rightarrow V_{c}(s)=\frac{(s+1) \times 5(s+1)}{\left(s^{2}+5-s\right.} \frac{s^{2}+2 s+1-s^{2}-x-1}{s^{2}+s+1}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow v_{c}(s)=s\left[\frac{s}{5+1}\right]=\left[\frac{s+\frac{1}{2}}{(5+1)^{2}+\left(\frac{\sqrt{2}}{2}\right)^{2}}\right] \\
& \Rightarrow V_{0}(s)=s\left[\frac{\left(s+\frac{1}{2}\right)}{\left(s+\frac{1}{2}\right)^{2}+\left(\frac{\sqrt{3}}{2}\right)^{2}}-\frac{1}{2} \times \frac{(\sqrt{3})}{\sqrt{3}+1)^{2}+\left(\frac{\sqrt{3}}{2}\right)^{2}}\right] \\
& v V_{0}(t)=L^{-1}[v(s)]=5 \cdot e\left[\cos \left(\frac{\sqrt{3}}{2} t\right)-c \sin \sin \left(\frac{3}{2} t\right)\right] v
\end{aligned}
$$

(2) Fid i(t) by lophere tronfom method.

* Initial ronditions are Zereg.

$$
\begin{aligned}
& \quad Z=\left(\frac{2}{s}\right) 12=\frac{\frac{3}{2}}{\frac{2}{3}+2}=\frac{4}{2+2 s} \frac{2}{(+1)} \\
& I_{t}(s)=\frac{6}{R_{t}}=\frac{\frac{6}{s+5}}{1+0 \cdot 1 s+\frac{2}{(s+0}}=\frac{0 \cdot(s+1)}{(s+5)\left(s^{2}+1 s+3\right)} \\
& \Rightarrow 1(s)=\frac{(s+1)}{(s+5)^{2}(s+6)}
\end{aligned}
$$

Wer red $I_{2}(5)$

$$
=\frac{(s+1)}{(s+1)(s+s)^{2}(s+6)}=\frac{1}{(s+5)^{2}(s+6)}=\frac{A}{(s+s)^{2}}+\frac{B}{(s+s)}+\frac{C}{(s+6)}
$$

patal froction

But $\left.c=\frac{1}{\left.(s+5)^{2}\right|_{s-6}} \right\rvert\, \& H \quad B=-S A=1$

$$
\begin{aligned}
& I_{2}(s)=\frac{1}{(s+5)^{2}} \frac{1}{(s+5)}+\frac{1}{(s+6)} \\
& \alpha_{2}(t)=1\left[I_{2}(5)=+e^{s t} e^{s t}+e^{6 t} A\right.
\end{aligned}
$$

$$
\begin{aligned}
& \therefore I_{2}()=I_{s}(s)\left[\frac{\left(\frac{2}{5}\right)}{\frac{2}{3}+2}\right]=\frac{I_{1}(0)}{s+1} \\
& \Rightarrow A(s+6)+B(s+5)(s+6)+C(s+5)^{2}+1 \\
& \Rightarrow s^{2}[B+C]+s[A+1 B+10 C]+[6 A+30 B+25 C]=1 \\
& \Rightarrow B+C=0, A+B+10 C=0, \quad \in A B O B+25 C=1
\end{aligned}
$$

 degsinted 2-2, is comectid the lod. A pol of whot enegge seure
 which logd is conneded colled os the putput pott.

dne port Neturiots

Two poit Netuocith

Multrotet Netark

Two port Network parameters:

A sumpluares

c The vitfeger con curet the thedid netwark inside box ope not avcilable for the measuremends.

 Sower ave nollowed.
 copocitar ithen the nutal condtion them ose oswind to be zerio

(1) Z-Topnoter Copen arcull Implederice Torinhereg:

 independert vulables whle V_{4} \& V , mue dependert Vabiblese

Th exulata foray

$$
\begin{aligned}
& v_{1}=z_{1} I_{1}+z_{n} I_{2} \\
& v_{1} F_{21} I_{1}+z_{i z} I_{2}
\end{aligned}
$$

In matrix fam

$$
\left[\begin{array}{l}
v_{1} \\
y_{2}
\end{array}\right]-\left[\begin{array}{ll}
z_{13} & z_{1} \\
z_{2} & z_{22}
\end{array}\right]\left[\begin{array}{l}
I_{1} \\
I_{2}
\end{array}\right] \Rightarrow v=z, 1
$$

(1) Let $T=0$, poxt- is open exrcuted
epercircut deding petnt dipitipulug
Aso $V_{2}=z_{21} \rightarrow z_{2}=\left.\frac{V_{2}}{T_{1}}\right|_{2}=$ opronernuit for serd trinte umedonos.
(2) Let $x, 0$. polt -1 epen cercuited

$$
M W_{1}=z_{2} I_{2} \Rightarrow \quad y_{1}=\frac{I_{1}}{I_{2}} I_{1}
$$

$$
\text { 故 } z_{2}+z_{2 l}=\left.\frac{y_{2}}{w_{1}}\right|_{1}
$$

 any, ifthe instare pre of the pout sopencrowited

 Nashter and V_{1} a v_{2} ase indepodent vosables

$$
\begin{aligned}
& I_{1}=F_{1}\left(v_{0} V_{2}\right) \\
& I_{2}=F_{2}\left(v_{0}\right)
\end{aligned}
$$

An eqjuatron form

$$
\begin{aligned}
& I_{1}=V_{12} V_{1}+y_{12} V_{2} \\
& I_{2}=V_{2} V_{1}+V_{22} V_{2}
\end{aligned}
$$

I In matro foems

$$
\begin{aligned}
& {\left[\begin{array}{l}
I_{1} \\
I_{i}
\end{array}\right]=\left[\begin{array}{ll}
y_{1} & y_{2} \\
y_{2} & y_{22}
\end{array}\right]\left[\begin{array}{l}
y_{1} \\
v_{2}
\end{array}\right]} \\
& [x]=y][y]
\end{aligned}
$$

(1) At duto. \& poxter is shost excuited

$$
I_{1}=y_{t} y_{t} \quad y_{1}+\left.\frac{I_{4}}{v_{4}}\right|_{v_{2}=x} u
$$

Shost cucuit duving point Thp:ut odnittosice
$I_{2}=y_{23} u_{4} \Rightarrow y_{21}=\frac{I_{2}}{M_{1}} \|_{y t a}$ is shitcircut fexpud tonter idmittonoe.
(2) At V1 0: port-1 shestcircuited.

 port routpat gainutinie.
 at ony at thi nestance prepest is short trecuted.

(3) h: Parinotex to Hybred Pasumaleest:

 (a)soper oircuit impedunce pacmeleymearuspurits Thay are prepresed by.

$$
\begin{aligned}
& N_{1}=F_{1}\left(x_{i}\right) \\
& H_{2}=\left(v_{L}\right)
\end{aligned}
$$

In eppatiox frem,

$$
\begin{aligned}
& Y_{1}=h_{4} I_{1}+h_{2} b_{2} \\
& W_{k}=h_{a_{2}} I_{4} h_{2} V_{2}
\end{aligned}
$$

In: meturfainh

$$
\left[\begin{array}{l}
x_{1} \\
I_{2}
\end{array}\right]=\left[\begin{array}{ll}
h_{1} & h_{n} \\
h & h_{2}
\end{array}\right]\left[\begin{array}{l}
x_{2} \\
v_{2}
\end{array}\right]
$$

Hodividud pecernetue cintse dshernd
(A) $\mathrm{V}_{2}=0$ Provt 2 H Rhet crocutoud

(2)At I $1=0$ port i 1 open civerted.

 anid curvent I our depenident variettes:

$$
\begin{aligned}
& V_{i}=f_{1}\left(v_{2}-I_{2}\right) \\
& I_{i}=f_{2}\left(v_{e}-I_{2}\right)
\end{aligned}
$$

Inceriutir form

$$
\begin{aligned}
& V_{1}=A V_{2} B\left(-H_{2}\right) \\
& i_{i}=C V_{2}+R\left(+I_{2}\right)
\end{aligned}
$$

IT metx fotm

$$
\left[\begin{array}{c}
v_{1} \\
V_{1}
\end{array}\right]=\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]\left[\begin{array}{c}
v_{2} \\
-I_{2}
\end{array}\right]
$$

(4) - I_ 0 i pest z opencruvibed

$$
\begin{aligned}
& y_{1}=A V_{2} \Rightarrow A=\left.\frac{V_{2}}{V_{2}}\right|_{-H_{H}=9}
\end{aligned}
$$

sending end

Trinssindsern tive

Inpultat

Conditen of symaty:
If the impedence measued et one port in yuct to The mpedince meosured at the othesport with remaing perst openorcuited. the network is said be sigmetivel.

condition of syminity of z pacimiterst
The basic epretions of Patumetex dery

$$
\begin{aligned}
& y_{s}=z_{1} t, \Rightarrow \frac{V_{1}}{T}=z_{1} \\
& \frac{V_{1}}{I_{2}}=z_{2 z}
\end{aligned}
$$

Fa $V_{4}=V_{5}$ + $I_{2}=0$
for condera 8 s 8 metion

$$
\begin{aligned}
& \frac{V_{1}}{T_{1}}=\frac{v_{1}}{T_{2}} \\
\Rightarrow & z_{11}=z_{4}
\end{aligned}
$$

condition of symatty for y-poantes
The boug queto do y prounders arey.

$$
\begin{aligned}
& x_{2}=y_{2 i} v_{1}+y_{2} v_{2} \quad \text { It }\left[x_{2} y_{1}-x_{0} y_{2}\right] \\
& \text { for } X_{1}=y_{8} \quad V_{2}=0 \\
& y_{1}=y_{4} y_{5}+y_{1} v_{2} \\
& \text { 触 }
\end{aligned}
$$

$$
\begin{aligned}
& v_{2}=\frac{-V_{4}}{y_{2}} V_{5} \\
& \text { sabstite } V_{2} \text { :in ober \& Ta } \\
& \begin{array}{l}
x_{1} y_{1} y_{s}+y_{2}\left[\frac{y_{2}}{y_{2}}\right] y_{2} \\
=\left[\frac{\left.y_{1} y_{22}-y_{2} y_{2}\right]}{y_{22}}\right]
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
0=y_{1}+y_{1} v_{s} \\
-y_{n}+y_{0} v_{s} .
\end{array} \\
& v_{t}=-\frac{y_{2}}{y_{n}} v_{s}
\end{aligned}
$$

$$
\begin{aligned}
& y_{2}=y_{2}\left(-\frac{y_{1}}{x_{1}} v_{s}+y_{2} v_{s}\right. \\
& \frac{y_{5}}{I_{2}}=\frac{y_{0}}{y_{12} y_{22}-y_{2} y_{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \frac{y_{22}}{y_{1} y_{1}-y_{1} y_{21}}=\frac{y_{i 1}}{y_{y_{0}} y_{1 / 2}} \\
& \Rightarrow Y_{1}=Y_{22}
\end{aligned}
$$

$$
W_{0}=h_{2 x}+H_{2} v_{2}
$$

$$
\begin{aligned}
-h_{z_{2}} V_{2} & =h_{L_{1}} I_{1} \\
N_{2} & =\frac{-h_{z_{2}}}{h_{1}}
\end{aligned}
$$

Substilut V_{2} Vs

$$
\begin{aligned}
& V_{s}=h_{1}+h_{1}\left(-h_{1}\right) h_{i} \\
& \frac{V_{3}}{I_{i}}=\frac{h_{1} h_{2}-h_{1} h_{2}}{h_{12}}
\end{aligned}
$$

For conditione F guittig

$$
\begin{aligned}
& V_{1}=V_{2}+B\left(-I_{2}\right) \\
& T_{1}-C v_{2}+D\left(-I_{2}\right)
\end{aligned}
$$

$$
\begin{array}{r}
V_{3}=A V_{2} \\
H_{4}=\frac{V_{2}}{E} \\
V_{2}=\frac{T_{1}}{E}
\end{array}
$$

Substhou V_{2} in V 多

$$
\begin{aligned}
& V_{s}=\frac{A}{C} \\
& \frac{V_{S}}{I}=\frac{A}{C}
\end{aligned}
$$

Fe\％$V_{2}=V_{s}+\mathrm{I}_{1}=$

$$
V_{1}=A V s+B(-1+
$$

uit $0=\mathrm{CV}_{3}+(-1)$

$$
\begin{aligned}
& C V=D T 2 \\
& \frac{V}{L_{2}}=\frac{D}{C}
\end{aligned}
$$

For cunditum granty．

$$
\begin{aligned}
& \frac{V_{s}}{1}=\frac{V_{s}}{\frac{1}{2}} \\
& \frac{D}{R}=\frac{D}{R} \\
& \sqrt{A}=D
\end{aligned}
$$

$$
\begin{aligned}
& \frac{V}{I}+\frac{V}{T 2}
\end{aligned}
$$

$$
\begin{aligned}
& \text { (huh } \left.-h_{i 2} h_{2}\right)=1
\end{aligned}
$$

$$
\begin{aligned}
& V_{1}=h_{1} I+h_{12} V_{2} \text { for } V_{2}=V_{s} \text { I. }=0 \\
& I_{2}=h_{4}: I_{4}+h_{2} V_{2} \\
& \text { Fro } V=V=2 \\
& V_{5}=h_{4} W_{4}+h_{12} V_{2} \\
& \mathrm{~N}_{1}=\mathrm{h}_{12} \mathrm{Vs}_{s} \\
& \text { 等 } \\
& \mathrm{H}_{2}=h_{2} \mathrm{H}_{4} \\
& \frac{\sqrt{2}}{y_{2}}: \frac{1}{h_{22}}
\end{aligned}
$$

TI The vilo of voltge at ove port to the cussent at otherpot s seme the reto．of，vittoe sud cupret pustiengase interchayd． Ther network es sied to br reciprocel．

for z Premiters．

青要 basic equitions：

$$
\begin{aligned}
& V_{1}=z_{1}+z_{x} I_{2} \\
& V_{2}=z_{1} z_{1}+z_{2} I_{2}
\end{aligned}
$$

$$
V_{s}=z_{1} z_{1}+z_{0}\left(-x_{2}\right)
$$

$$
\begin{aligned}
z_{z i} & =m_{i c} I_{1} \\
I_{i} & =\frac{z_{i n}}{z_{2 a}} I_{k}^{1}
\end{aligned}
$$

$\left.v_{5}=\frac{z_{w} z_{2}}{z_{21}} 1+z_{1} z_{1}\right)$

$$
\begin{aligned}
& V_{1}=y_{3} V_{2}=0, x_{1}=-T_{2}
\end{aligned}
$$

$$
\begin{aligned}
& 6=z_{n}\left(x_{1}\right)+z_{12} H_{4}
\end{aligned}
$$

$$
\begin{aligned}
& I_{2}=\frac{\partial_{4}}{z_{i n}}{ }^{2} \\
& \begin{array}{rl}
\frac{v}{I} & =\frac{v}{H} \\
\Rightarrow z & z z
\end{array} \\
& \Rightarrow z_{12}-z_{21}
\end{aligned}
$$

3bshio 㝜2 $v_{j}=-z_{2}+z_{4}\left[\frac{z_{1}}{z_{2}}\right] x^{\prime}$
fr．condiven or gepexty．

for y Priamiters：

Te bave equitions
$w_{1} s y_{0} v_{0}+y_{12} V_{2}$
等 $=y_{21} y_{1}+y_{2}$

I：
蛆 $-I_{i}=y_{2} v_{s}$

$$
\frac{v_{3}}{r_{21}^{+}}=-\frac{1}{y_{21}}
$$

For conditomg

$$
\begin{aligned}
& +\frac{1}{x_{n}}=+\frac{1}{y_{21}} \\
& Y_{1 z}=y_{21}
\end{aligned}
$$

$$
-y_{1} y_{2}
$$

$$
\frac{y_{5}}{x_{1}^{1}}=\frac{-1}{y_{01}}
$$

Con verinn of one poranalex ther prametexs
(1) Z Pirmitas

$$
\begin{aligned}
& v_{1}=z_{4} I_{1}+z_{1} I_{2} \\
& v_{2}=z_{21} I_{1}+z_{2} I_{2}
\end{aligned}
$$

Q Interms of y Paramiters?

$$
\begin{aligned}
& I_{1}=y_{12} y_{1}+y_{2} V_{2} \\
& I_{2}=y_{2} v_{1}+y_{22} V_{2}
\end{aligned} \quad\left[\begin{array}{l}
I_{1} \\
I_{2}
\end{array}\right]=\left[\begin{array}{ll}
y_{1} & y_{2} \\
y_{2} & y_{22}
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]
$$

unye crames rule for V $\& V_{2}$

$$
\begin{aligned}
& \left.\Rightarrow \quad v_{1}=\left[\frac{y_{2}}{\Delta y}\right]+\left[\frac{y}{\Delta y}\right]_{2} \quad \& y_{2}=\left[\frac{y_{2}}{\Delta y}\right]+\frac{y_{1}}{\Delta y_{2}}\right] ⿳_{2}
\end{aligned}
$$

cimpuing with z Puencta

$$
[z]=\left[\begin{array}{ll}
z_{1} & z_{12} \\
z_{21} & z_{22}
\end{array}\right]=\left[\begin{array}{cc}
\frac{y_{2 x}}{\Delta y} & \frac{-y_{12}}{\Delta y} \\
\frac{-y_{21}}{\Delta y} & \frac{y_{1}}{\Delta y}
\end{array}\right]
$$

(b. In teame: h-plemeter

$$
\begin{aligned}
& \begin{array}{l}
v_{1}=h_{1} I_{1}+h_{12} v_{2} \\
I_{2}=h_{21} I_{1}+h_{22} v_{2}
\end{array} \Delta_{2}\left[\begin{array}{l}
v_{1} \\
I_{2}
\end{array}\right]\left[\begin{array}{ll}
h_{1} & h_{1} \\
h_{12} & h_{2}
\end{array}\right]\left[\begin{array}{l}
I_{1} \\
v_{2}
\end{array}\right] \\
& \Rightarrow h_{22} v_{2}-h_{1}{ }_{1}+{ }_{2} \\
& V_{2}=\left[\frac{h_{2}}{h_{22}}\right]+\left[\frac{1}{h_{2 i}}\right]{ }_{2} \\
& n^{2} V_{1}=h_{11} I_{1}+b_{12}\left[\left(\frac{h_{21}}{n_{22}}\right) I_{1}+\left(\frac{1}{h_{22}}\right)_{2}\right] \\
& \text { Thesetore. } \\
& -\left[\frac{h_{1} h_{2}-h_{2} h_{2}}{h_{2}}\right]+\left[\frac{h_{2}}{h_{2}}\right] \frac{1}{2}
\end{aligned}
$$

$$
\begin{aligned}
& V_{1}=A V_{2}+B\left(I_{2}\right) \\
& D_{1}=C V_{2}+\infty(-1) \\
& \Rightarrow c v_{2}=T_{1}+D I_{2} \\
& \left.V_{2}=\left[\frac{1}{C}\right] I_{1}+\frac{D}{C}\right] \\
& \Rightarrow V_{1}=A\left[\left(\frac{c}{}\right)+\left(\frac{1}{C}\right) \Gamma_{z}\right]+B\left(-I_{2}\right)=\left(\frac{A}{C}\right) I_{1}+\left(\frac{A D}{C}-B\right) L_{z} \\
& \therefore[z]=\left[\begin{array}{ll}
z_{1} & z_{2} \\
z_{i n} & z_{z}
\end{array}\right]=\left[\begin{array}{ll}
\frac{A}{c} & \frac{A D}{C} \\
\frac{7}{c} & \frac{D}{C}
\end{array}\right]
\end{aligned}
$$

2) Y Pasanters:

$$
\begin{aligned}
& I_{1}=y_{11} V_{1}+y_{12} v_{2} \\
& I_{2}=V_{2} V_{1}+y_{2} V_{2}
\end{aligned}
$$

a) Inlewn of zupremetas:

Wing Grannorque tar I I Iny

$$
\begin{aligned}
& \left.I_{1}=\frac{\left|\begin{array}{ll}
v_{1} & z_{22} \\
v_{2} & z_{22}
\end{array}\right|}{\mid z_{2}} \frac{z_{12}}{z_{21}} z_{2} \right\rvert\,
\end{aligned} \frac{z_{22} v_{4}}{\Delta z}+\frac{\left(-\frac{z_{2}}{\Delta z}\right.}{\Delta z} v_{2} .
$$

(b) Tutems of h -Tacerneley

$$
\begin{aligned}
& v_{1}=h_{\text {ug }} \text { zut has } v_{2} \\
& \text { T2. } h_{4} H_{4}+h_{22} v_{2} \\
& \Rightarrow h_{1} I_{F_{1}}=v_{1}-h_{12} V_{2} \\
& y_{4}=\left(\frac{1}{h_{1}}\right) y_{1}+\left(\frac{h_{2}}{h_{1}}\right) v_{2} \\
& \Rightarrow I_{2}=h_{2}\left[\frac{L_{1}}{h_{1}} v_{2}+\left(\frac{h_{i}}{h_{i}} v_{2}\right]+h_{z_{2}} v_{2}=\left(\frac{h_{21}}{h_{2}}\right) v_{1}+\left(\frac{h_{1} h_{2}-h_{i} h_{2}}{h_{i 1}}\right) v_{2}\right.
\end{aligned}
$$

(C) Intama. \& ABCD perienctias.

$$
\begin{gathered}
v_{1}=A V_{2}+\left(-v_{2}\right) \\
v_{1}=C v_{2}+D\left(x_{2}\right) \\
\Rightarrow \quad-I_{2}=v_{1}-A v_{2} \Rightarrow I_{2}\left(\frac{1}{B}\right) v_{1}+\left(\frac{A}{B}\right) v_{2}
\end{gathered}
$$

$$
\begin{aligned}
& I_{1}=C Q_{2}+D\left[\frac{1}{B} V_{1}-\frac{A}{B} V_{2}\right] \\
& =\left(\frac{B C-A D}{B}\right) v_{2}+\left(\frac{B}{S}\right) V_{1}=\left(\frac{D}{B}\right) V_{1}+\left(\frac{B C-A D}{B}\right) V_{2} \\
& \Rightarrow y=\left[\begin{array}{ll}
\gamma_{1} & y_{12} \\
y_{0} & y_{1}
\end{array}\right]=\left[\begin{array}{cc}
\left.\frac{(D}{B}\right) & \left(\frac{B-A D}{B}\right. \\
\frac{-}{5} & \frac{x}{8}
\end{array}\right]
\end{aligned}
$$

3) 1 . Pa sameters

$$
\begin{aligned}
& y_{1}=h_{w} I_{i}+h_{12} V_{2} \\
& I_{2}=h_{i} I_{1}+h_{2 i} V_{2}
\end{aligned}
$$

(a) Cutewne, of z-pasineteas

$$
\begin{aligned}
& v_{1}=2_{1}^{I_{1}} z_{1} Z_{n_{2}} I_{2} \\
& v_{2}=z_{21} \psi_{1}+F_{i 2} \psi_{2} \\
& Z_{2} \text { I }
\end{aligned}
$$

Subshbide in in 4

$$
\begin{aligned}
& \Rightarrow[h]=\left[\begin{array}{ll}
h_{i 1} & h_{2} \\
h_{2} & h_{i 2}
\end{array}\right]=\left[\begin{array}{ll}
\frac{z_{1} z_{22}-z_{12} z_{21}}{z_{22}} & \frac{z_{12}}{z_{22}} \\
-\frac{z_{21}}{z_{22}} & \frac{10}{z_{22}}
\end{array}\right] .
\end{aligned}
$$

$$
\begin{aligned}
& I_{x}=y_{1} v_{4}+y_{12} V_{2} \\
& y_{2}=y_{21} v_{1}+y_{22} y_{2} \\
& \Rightarrow V_{1} V_{i}=x_{1}-Y_{1} V_{2} \\
& v_{1}=\left(\frac{1}{y_{11}}\right) v_{1}+\left(\frac{y_{12}}{y_{1}}\right) v_{2}
\end{aligned}
$$

$$
\begin{aligned}
& 12=\quad y_{2}\left[\frac{1}{y_{1}} I_{1}+\left(\frac{y_{12}}{y_{1}}\right) v_{2}\right]+y_{22}=\left(\frac{y_{24}}{y_{1}}\right) w_{1}+\left(\frac{y_{1} v_{22}-y_{2} y_{2}}{y_{1}} v_{2}\right.
\end{aligned}
$$

Hence
(C) Hen : ABCD Parancters

$$
\begin{aligned}
& V_{1}=A V_{2}+B\left(S_{2}\right) \\
& I_{1}=c V_{2}+D\left(-I_{2}\right) \\
& B I_{2}=-I_{1}+c v_{2} \\
& I_{2}=\left(\frac{-1}{D}\right)_{1}+\left(\frac{c}{S}\right) v_{2}
\end{aligned}
$$

Substite π_{2} in eg. V v.

$$
\begin{aligned}
& V_{1}=A V_{2}+B\left[\frac{b}{D} x_{1} \frac{c}{D}\right] \\
& =\left(\frac{A D A B C}{D}\right) y_{2}+\frac{C}{D} I_{1}=\left(\frac{B}{D}\right) 4_{1}+\left(\frac{A D-B C}{D}\right) y_{2} \\
& \rightarrow[h]=\left[\begin{array}{ll}
h_{i r} & h_{i 2} \\
h_{4} & h_{i 2}
\end{array}\right]=\left[\begin{array}{cc}
\frac{B}{D} & \frac{A D-E C}{D} \\
\frac{D}{D} & \frac{c}{D}
\end{array}\right]
\end{aligned}
$$

4) $A B C D$ Parinitees $\quad v_{1}: A v_{2}+B\left(-I_{2}\right)$

$$
I_{1}=C V_{2}+D\left(-I_{2}\right)
$$

(c) Itelins: 5 TPatenutase

$$
\begin{aligned}
& V_{1}=z_{1} w_{1}+z_{2} I_{2} \\
& v_{2}=z_{\text {E }}+z_{2} \\
& F_{21} F_{1}=V_{2}-z_{22} z_{2} \Rightarrow I_{1}=\left(\frac{1}{z_{21}}\right) v_{2}+\left(\frac{z_{21}}{z_{2 i}}\right) I_{2}
\end{aligned}
$$

$$
\begin{aligned}
& v_{1}=z_{11}\left[\frac{1}{Z_{21}} v_{2}+\frac{z_{2}}{z_{21}} J_{2}\right]+Z_{12} I_{2} \\
& =\frac{z_{11}}{z_{11}} \cdot v_{2}+\left(\frac{z_{11} z_{22}-z_{12} z_{21}}{z_{21}}\right)\left(x_{2}\right) \\
& {\left[T\left[\begin{array}{ll}
A & \text { B } \\
\epsilon & B
\end{array}\right]=\left[\begin{array}{cc}
\frac{z_{11}}{z_{i 1}} & z_{12} z_{2 x} z_{i n} z_{21} \\
\frac{z}{z_{21}} & \frac{z_{21}}{z_{21}}
\end{array}\right]\right.}
\end{aligned}
$$

(b) Inteens. of APRomtax

$$
\begin{aligned}
& a_{1}=v_{1} v_{1}+y_{2} v_{2} \\
& s_{2}=y_{2} v_{1}+y_{2 z} v_{i} \\
& y_{2} v_{1}=-v_{2 x} \cdot v_{2}+I_{2} \Rightarrow v_{1}=\left(\frac{-y_{22}}{v_{21}}\right) v_{2}+\left(\frac{1}{v_{1}}\right)(-1)
\end{aligned}
$$

Substite the vilue of O_{1} in ofy of In

$$
\begin{aligned}
& I_{1}=w_{1}\left[\frac{-y_{2}}{V_{2 i}}+\left(\frac{-1}{y_{4}}\right)\left(v_{2}\right)\right]-M_{1} V_{2} \\
& =\left(\frac{y_{1} y_{12}-y_{1} y_{12}}{y_{2}}\right) y_{2}+\left(\frac{-y_{1}}{y_{22}}\right)(-1-1)
\end{aligned}
$$

(9) Wherys of h-Prametorio

$$
\begin{aligned}
& V_{1}=h_{1} I_{1}+h_{2} V_{2} \\
& I_{1}=h_{21}+h_{12} V_{2} \\
& h_{2 i}=-L_{1} V_{2}+v_{2} \Rightarrow I_{1}-\frac{h_{2}}{h_{21}} N+\left(\frac{-1}{h_{2}}\right)\left(s_{1}\right)
\end{aligned}
$$

Subltike vilue f. s. in Exat vis

$$
\begin{aligned}
& \left.v_{1}=h_{0}\left[\frac{h_{2}}{h_{21}} v_{2}+\frac{b_{1}}{h_{n}}\right](+4)\right]+\operatorname{kov}_{2} v_{2} \\
& \rightarrow v_{1}=\left(\frac{h_{1} h_{21}-h_{d d_{2}}}{h_{21}}\right) v_{2}+\left(\frac{h_{2}}{h_{2}}\right)\left(x_{2}\right)
\end{aligned}
$$

Intercomedion of Two ports,
(1) Solit convedre of tor ports
(2) Paudll Connection th to pox
(3) Cuncude Cernuction of tuoperts

1) Series Comiction 8 tow port: Consides bhet two Nol Netwethe
 When two por sed conredted in
 to gellaverdl z promeleu d the turction.

$$
\begin{equation*}
I_{i}=I_{i}=I_{1}-B \quad I_{i}=i_{2}{ }^{r}=I_{2}^{4} \tag{4}
\end{equation*}
$$

For Network $\mathrm{N}^{\prime \prime}$

$$
\begin{aligned}
& v_{1}^{\prime}: z_{k}^{\prime} I_{1}^{\prime}+z_{12} I_{2}^{+} \\
& x_{2}^{\prime}=z_{21}^{\prime}+1+z_{22}^{\prime} I_{2}^{\prime}
\end{aligned}
$$

For netisurn :

$$
\begin{aligned}
& v_{1}^{\text {H }} z_{1}^{1} x^{4}+z_{1}^{4}
\end{aligned}
$$

From the portin © (2) (2) (4)

$$
\begin{aligned}
& v_{1}=\left(z_{1}^{\prime}+z_{1}^{\prime \prime}+\left(z_{2}^{\prime}+z_{13}\right) I_{1}\right. \\
& v_{2}=\left(z_{i}^{\prime}+z_{2}^{\prime}\right) I_{1}+\left(z_{1}^{\prime}+z_{1}\right) I_{2}
\end{aligned}
$$

In Matas form,
crecall z Pranielery.

3blem:

sel

Network in: sdeming.
© Let 1 = ofer, port +2 open orcuted
Apply kyi wo mpit sidey

$$
v^{\prime}=\left[\left[L L+\frac{y}{c}\right] \Rightarrow \frac{y_{k}^{\prime}}{y_{1}^{\prime}}=\left(a L+\frac{1}{6}\right)=x\right.
$$

Valtige v_{2}^{\prime} at ectuat interis of I sis

$$
y_{2}=\left(\frac{1}{s c}\right) x^{+} \Rightarrow \frac{y_{2}}{x_{1}}=\frac{1}{s c}
$$

by definitong $z_{2}^{\prime}=\frac{v_{2}^{\prime}}{u_{1}^{\prime}}=\frac{1}{s c} \Omega$

Let TH $=0$ ee, pot 1 w pradreuited.
Aply ky t cotplite.

$$
V_{2}^{\prime}=I_{2}^{\prime}\left(s t+\frac{1}{s c}\right) \Rightarrow \frac{V_{2}^{\prime}}{I_{2}}=\left(s L \cdot+\frac{1}{s C}\right)
$$

by defition $z_{2}=\left(s(x) \frac{1}{s c}\right) A$
2i Vetage Vin lems of İ

$$
V_{t}^{4}=\left(\frac{1}{s c}\right)+\frac{v}{-1} \cdot\left(\frac{1}{s c}\right)
$$

by isfation $z=\left(\frac{1}{5 C}\right) \quad \Omega$
\therefore For the notitoren.

$$
[z]=\left[\begin{array}{ll}
z_{1} & z_{12} \\
z_{n} & z_{4}
\end{array}\right]=\left[\begin{array}{cc}
s L x c & \frac{1}{s c} \\
\frac{1}{s c} & s L+\frac{1}{s c}
\end{array}\right]
$$

(B) To deteonuine 2 pronvelex ${ }^{\text {I }}$:

6 To deleomine $z_{1}^{\prime \prime}$ \& z_{20}^{4}

Apely knt.

$$
\begin{aligned}
& v_{1}^{H}=\left(s L+\frac{1}{5 C}\right) y_{1}^{4} \\
& \frac{v_{1}^{n}}{5^{n}}=\left(s t+\frac{1}{s c}\right)
\end{aligned}
$$

$$
y_{2}^{*}=(s L) 4 \quad \frac{y_{2}^{4}}{n_{1}}=1
$$

By defition. $z_{=1}^{n}=\frac{\mathrm{N}_{2}^{\prime \prime}}{4_{4}^{\prime \prime}}=(\mathrm{s}) \mathrm{s}$

Apty kir

$$
v_{2}^{\prime \prime}=\left(s L+\frac{1}{s c}\right)^{-1} \Rightarrow \frac{v_{2}}{x^{2}}=\left(s k+\frac{1}{c}\right)
$$

us v_{1}^{4} inters of I_{2}^{4} ion

$$
[z]=[z][z]=\left[\begin{array}{ll}
\frac{1}{2}\left(s L+\frac{1}{s c}\right) & s+\frac{1}{s c} \\
1 s+\frac{1}{s c} & z\left(s+\frac{1}{s c}\right)
\end{array}\right]=\left(s L+\frac{1}{s c}\right)\left[\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right]
$$

2) Parallel cometion of two Portic.
 are corvedid. in padil. when two perts ase coinuted in phullely ixe can add their

 of the paicill corvintion:
Let

$$
\begin{aligned}
& \text { Nexth } N^{\prime \prime} \rightarrow y_{B}^{\prime} y_{k}^{\prime} y_{2}^{\prime}, y_{2}
\end{aligned}
$$

For Parellet comination,

$$
\begin{equation*}
I_{1} I_{1}^{1}+I_{1}^{n} \text { (1) } I_{2}=I_{2}+I_{2} \tag{2}
\end{equation*}
$$

\& $\quad v_{1}: v_{1}^{\prime}=y^{\prime \prime} \quad$ (3) $\quad v_{2}+v_{2}^{\prime}=v_{2}^{\prime \prime}$
For Netwosk N^{\prime}

$$
\begin{align*}
& I_{1}^{+}=y_{1}^{\prime}+v_{1}^{d}+v_{2}^{1} \\
& I_{0}=y^{2}+y_{2} \\
& \text { (a) For Netlowk N. } \tag{4}\\
& x_{1}^{1}=y^{2}+y^{2} V_{2}^{2} \\
& y_{2}^{3}=y_{2}^{\prime \prime} x_{1}^{4}+y_{2} y_{2}^{14}
\end{align*}
$$

From the equation © (2) \& (3)

$$
\begin{aligned}
& I_{1}=\left(y_{1}^{\prime} y_{1}^{n}\right) a v_{1}+\left(y_{2}+y^{4}\right) v_{2} \\
& I_{2}=\left(y_{2}^{\prime}+y_{21}^{2}\right) y_{1}+\left(y_{2}+y_{22}^{\prime}\right) V_{2}
\end{aligned}
$$

In nutux Fans.

$$
\left[\begin{array}{l}
I_{1} \\
I_{2}
\end{array}\right]=\left[\begin{array}{ll}
y_{1}+y_{14} & y_{1}+y_{2} \\
y_{21}+y_{2 i} & y_{22}+y_{2}
\end{array}\right]\left[\begin{array}{l}
y_{2} \\
y_{2}
\end{array}\right]
$$

Problems The network of the shewn the fignos of the typered for the

sif
Civen retwok muy bo redrown supudd.
combintun. Iv networks

Transfond Neluw

$$
\begin{aligned}
& V_{1}=V_{14}=V_{46} \\
& V_{2}=V_{26}=V_{2 b} \\
& S_{y}=S_{6}+I_{16} \\
& I_{2}=I_{26}+V_{26}
\end{aligned}
$$

Equenter ypantity

$$
\begin{aligned}
& I_{1}=y_{1} V_{1}+y_{12} V_{2} \\
& I_{2}=y_{41} v_{1}+y_{22} V_{2}
\end{aligned}
$$

Apply kel thed $x,(2 \pi, \cdots$, If $)$

$$
\begin{aligned}
& \frac{V_{1 a}-V_{x}}{2}+\frac{V_{2}-V_{x}}{2}=s V_{x} \\
& \frac{V_{0} * V_{2 a}}{2^{2}}=(s+i) V \\
& \Rightarrow V_{x}=\frac{V_{12} V_{2}}{2(s+1)}
\end{aligned}
$$

$$
\begin{aligned}
& I_{i}=\frac{V_{1 c} V_{e x}}{2}=\frac{V_{1 a}}{2}-\frac{1}{2}\left[\frac{v_{1}+v_{2}}{x(v+1)}\right] \\
& T_{i \alpha}=\left[\frac{1}{2}-\frac{1}{4(s+1)}\right]
\end{aligned}
$$

m? subdike $v_{x} \ln I_{2 v}$ enitiong

$$
\begin{aligned}
& T_{2 a}-\frac{V_{2} U_{*}}{2}=\frac{V_{2}}{2}-\frac{1}{2}\left[\frac{V_{1}+N_{2}}{2(5+1)}\right] \\
& \Rightarrow I_{20}=\left[-\frac{1}{4(s+)}\right] v_{0}+\left[\frac{1}{2}+\frac{1}{4(s+i)}\right] v_{2 c}
\end{aligned}
$$

$$
\left[\begin{array}{cc}
\frac{1}{2}-\frac{1}{4(N)} & \frac{1}{4(s+1)} \\
\frac{-1}{4(s+1)} & \frac{1}{2}-\frac{1}{4(s+1)}
\end{array}\right]
$$

$$
\begin{aligned}
& T_{5}+E_{2}=\frac{N_{4}}{1} \\
& \frac{v_{16}-y_{y}}{\left(\frac{1}{2 s}\right)}+\frac{v_{25}-y_{y}}{\left(\frac{1}{2 s}\right)}=v_{y} \\
& 2 s\left(v_{1}-V_{y}\right)+2\left(V_{2}+v_{y}\right)=v_{y} \\
& 2\left[V_{i b}+V_{2 b}\right]=(1+43) V_{\%} \\
& \text { V. }=\frac{22\left(v_{6}+V_{2 k}\right)}{1+4 \mathrm{~s}}
\end{aligned}
$$

substofy V 河 of T_{b}

$$
\begin{aligned}
& \Rightarrow y_{1 b}=\left[2 s-\frac{4 s^{2}}{1+4}\right] V_{16}-\left[\frac{4 s^{2}}{1+4 s}\right] V_{25}
\end{aligned}
$$

n^{5} subtidy $v y$ ing I

$$
\begin{aligned}
& \Longrightarrow v_{2 b}=\left[\frac{-4 s^{e}}{1+45}\right] V_{b b}+\left[25-\frac{2 s^{2}}{1+43}\right] V_{e b} \\
& y=\left[\begin{array}{ll}
2 s-\frac{4 s}{1+4 s} & \frac{-4 s}{1+4 s} \\
-\frac{4 s^{2}}{1+4 s} & 2 s-\frac{4 s^{2}}{1+4 s}
\end{array}\right]
\end{aligned}
$$

*-Totel y Pameter *sigenty

$$
y=
$$

3) Coscade convection. of ture peet

The coscide coviteton is elro culled Tenden competern.
 when turopote coe cometed coldes, whem mullity thery indiduel
 coscide cinuction

Let Trangmissconpasinitew Netuonk N^{\prime} be $\mathrm{A}, \mathrm{B}^{\prime}$ d. CH

$$
N^{\prime \prime} \text { be } A, B, C^{\prime \prime}
$$

Fo coscode conechey wheme

$$
\begin{aligned}
& V_{1}=V_{1}^{2}, V_{2}^{3}=V_{1}^{11} V_{2}=V_{2}^{3}
\end{aligned}
$$

TH:NHOKN

$$
\begin{aligned}
& V_{1}^{\prime}=v^{\prime}+B\left(I_{1}^{2}\right) \\
& I_{1}^{\prime}=c^{\prime} V_{2}^{\prime}+\left(y^{\prime}\right)
\end{aligned}
$$

Forenctivons $\mathrm{N}^{\text {Pr }}$

Overall Trinamishon parinfer ft the cescide cosuretion whe:

$$
\begin{aligned}
& =\left[\begin{array}{cc}
A & B \\
C^{4} & D
\end{array}\right]\left[\begin{array}{ll}
A & B \\
c^{4} & D
\end{array}\right]\left[\begin{array}{c}
V \\
-24
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\begin{array}{c}
V_{1} \\
I_{1}
\end{array}\right]=\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]\left[\begin{array}{c}
V_{2} \\
-I
\end{array}\right]}
\end{aligned}
$$

Imager Porenuteys
 $Z_{i n}$ with port 2 terminted in $Z_{i n}$ \& inpedncemesurd at Pos $-2 \times s$
 wuge inptoces

$\Rightarrow F_{M}=$ Diving point impedence at Pont $1 \in \frac{V_{i}}{I_{1}}$
$z_{k 2}=$ Drieing point mpedince of put-iz= $\frac{V_{4}}{T_{2}}$
Inoje pasimetes in terns Apen \& shert cusuiet ropedoncas
 mpedances at the put.

$$
z_{i}=\sqrt{z_{i 00} \cdot Z_{i s c}} \quad z_{12}=\sqrt{z_{2 c c} z_{2 s c}}
$$

Interms q ABCD

$$
z_{11}=\sqrt{\frac{A}{c}} \frac{B_{1}}{0} \quad, \quad z_{1}=\sqrt{\frac{D}{C} \frac{R}{A}}
$$

 Ingeneel, is a complex puentity consisting red pect-ingeatteruition constat theymuy Put Inge hase ecostant

 Whle dmest snipreses otheo band fof freguencies weded filter Insfles, attenution clunges suddry os theming ives. This fltes have the obility to discrimintel Beturein signds which diffar by frepanty.

Main dessifican of fittery
(1) Active fitey $\%$ Achuedement - Transistor, opamps along with RLS, Vdty, zumint S Ruygur Rowd Thy repmire additinyl powerge their operston:
 Thy denel repure ndditinl poive for opertin: But ay Thductay an bullyy. Thy we costy.

Basic fule Networts:
The range of frepunder ove which altenuction zese escalled posbid

The treyuacies which speute pass bud furg attenuetion burd ase cild os cut-H frequencies, dented by f.
Symintred t \AA sectinsi (undinded)

symetercl unbalinced Tsection.

symuetrat unbolonced π siction.

The impolatprapetres of symnelued ret works aie
(1) Chovelerstuc Tmpedance
(z)

8
(2) Prepazation contant (T)

For Tenetwork

$$
z_{01} \sqrt{\frac{z_{1}^{2}}{4}+z_{2}} \quad \& \quad e^{0}+\frac{z_{1}}{2 z_{2}}+\frac{z_{01}}{z_{2}}
$$

Fre-Networ

$$
z_{0 \pi}=\frac{z_{1} z_{2}}{\sqrt{\frac{z_{1}^{2}}{4}+z_{2}}}=\frac{z_{i} z_{2}}{z_{0 x}}=e^{2}+\frac{z_{1}}{z_{2}}+\frac{z_{1}}{z_{i}}
$$

Types of flese
(3) If filles prose all freyneroes upto cutof fregnencg attemitt all hrepncies above ty then is colled lonppusilles
(2) If filter attenutes all frepmices upto cuteft fregneny \& proses all frepmences atare the then is cllel thig pois filles
Ingenel typas if filler, they heve ghe patbund, she dophad \& isgle. alde tepmey But wo cen denign with tworut fequarais to get twonkes flte section.
(3) I fitel passic. All the frepxincees Fetreen the tom uat of firpeacies \& attenubles all ethes frepwnies, then is colled Fond prsselter
 passes: all ulher fegwnies, then te clled ass Band stapes Elimation filtes.
 in. Stop hiand. But practically stap bind allivetion gredudly cheper.

(6) Low pass filtex.

(c) Brind pus flles

(b) High past filles

(d) Bond elimintion fies

Charactecistic. Jnpedance in Pas band \&tcp bend:-
In ondes to determane the thencleustic myedonges possisite
 The volue of z_{0} voses with the rectance z_{i} s z_{2} offed by pusely renctive elemet the ous used in saues shint acime of filleg.
Theorem:

 (e which Zo ss pury rectuve (ingminy) the a value is grutenthan zex Conside a "t Netwerk with all the elensu verctive, reperented big Jx whoux red.bit moybe +we -ve.

$$
\text { Fo } \sqrt{\frac{z_{1}^{2}}{4}+z_{2} z_{2}} \quad e^{y}=\frac{T_{1}}{T_{6}}+\frac{z_{1}}{27_{2}}+\frac{z_{0}}{z_{2}}
$$

$$
\text { end } x=20 \operatorname{lof}\left|\frac{I}{I n}\right| \text { db }
$$

Hex, $z_{1} \mathcal{S}_{1} x_{1} z_{2}=\sqrt{x_{2}}$

$$
\begin{aligned}
& Z_{0}=\sqrt{\frac{\left(1 x_{1}^{2}\right.}{4}+\left(\mu x_{1}\right)\left(x_{2}\right)}=\sqrt{\frac{-x_{1}^{2}}{4}-x_{1} x_{2}}=\sqrt{-\left(\frac{x_{1}^{2}}{4}+x_{1} x_{2}\right.}=\sqrt{\frac{x^{2}}{4}+x_{1} x_{2}} \\
& e^{\prime} \cdot \frac{I_{5}}{I_{n}}=\frac{1+\frac{x_{1}}{2 x_{2}}+\frac{z_{2}}{x_{2}}}{}=\left(1+\frac{x_{1}}{2 x_{2}}\right)-j\left(\frac{z_{2}}{x_{2}}\right)
\end{aligned}
$$

depending on the sign of $x_{1} 2 x_{2}$ we get
$\operatorname{cosec} \frac{x_{1}^{2}}{4}+x_{1} x_{2}$ is ngetive $\Rightarrow-A \quad$ ches
cxs(2) $\frac{x^{2}}{4}+x_{1} x_{2}$ is pative $>+B$

case (

$$
\text { 造 } \frac{x_{1}^{2}}{4}+x_{1} \%_{2}=-A \quad \text { than } Z_{e}=\sqrt{\frac{x^{2}}{42}}=\sqrt{x_{1} x_{2}}=\sqrt{-A}=+\sqrt{A}
$$

$$
x=20 \log \left|\frac{\pi}{\pi_{k}}\right|=2 \log (0)-6 \text { xk } 2 \text { real }
$$

cose(2 if $\frac{x^{2}}{4}+x_{1} x_{2}=$ the $z_{0}=\sqrt{\frac{x^{2}}{4} z^{2} z_{2}}=\sqrt{8}$
Heve ze ingining (rusig: Yeetrie)

$$
e+\frac{1}{1 L_{x}} \cdot\left[1+\frac{x_{1}}{2 x_{2}}\right]-\left[\frac{\sqrt{8}}{x_{2}}\right]=\left(1+\frac{x_{1}}{x_{2}}\right)+\frac{x_{3}}{x_{2}}
$$

Herce in a flter, ous a: runge if fequente. Fo may be ethernel cumpindy:

 bytsell obsef powel. Intead poner delivened Ly nuthe pases to the lood. Thus the se ve thenulion verkad; This ndiceles Pastornd.

 idelly A A Infitl This ridicte stopitend

$$
\begin{aligned}
& e^{i} \frac{\mu_{0}}{\frac{1}{n}}=\left[1+\frac{x}{2 x_{2}}\right]-j\left[\frac{N}{x^{4}}\right] \\
& \left|\frac{I_{1}}{I_{i}}\right|=\sqrt{\left(1+\frac{x_{1}}{2 x_{2}}\right)^{2}+\left(\frac{\sqrt{x}}{x^{2}}\right)^{2}}=\sqrt{\left(1+\frac{x_{1}}{2 x_{2}}\right)^{2}+\frac{1 x^{2}}{x^{2}}} \\
& \rightarrow \sqrt{\left(1+\frac{x_{1}}{4 x_{2}}\right)+\frac{x_{1}}{x_{2}}+\frac{\left(\frac{x_{1}^{2}}{4}+x_{2}\right)}{x_{2}^{2}}}+\sqrt{1+\frac{x_{1}}{x_{2}}+\frac{x^{2}}{4 x_{2}}-\frac{x}{x_{2}}-\frac{x_{1}}{x_{2}}}=1
\end{aligned}
$$

$$
\sinh \frac{\alpha}{2} \cdot \cos \frac{\alpha}{2}=0 \quad \& \quad \cosh \frac{\alpha}{2} \operatorname{ch}^{\frac{\beta}{2}}=\sqrt{\frac{x_{1}}{4 z_{2}}}
$$

Case 0

$$
\begin{aligned}
& \sinh \frac{\alpha}{2}=0 \\
& \alpha=0, \beta+\theta \\
& \sin \frac{\beta}{2}=\sqrt{\frac{z_{1}}{4 \tau_{2}}}
\end{aligned}
$$

Cose (2)

Caseo gives pasibend
$\because \alpha=0$ \& limted by $\sin \frac{1}{2}=1$

$$
\begin{align*}
& -1<\frac{Z_{1}}{4 z}<0 \\
& \beta=2 \sin ^{4} \sqrt{\frac{z_{1}}{4 z_{2}}} \tag{1}
\end{align*}
$$

$$
\begin{aligned}
& \cos \frac{1}{2}=0 \\
& \beta=(2-1) x \quad \sin \frac{\beta}{2}=1 \\
& \text { Alo As * } \\
& \cos b \frac{x_{2}}{2}=\sqrt{\frac{z_{1}}{L_{2}}} \\
& \text { - }
\end{aligned}
$$

Cose(2) give stuptan en whene The thaceyte is π is

$$
\alpha=2 \cosh \sqrt{\frac{z_{1}}{z_{2}}}
$$

 and phex shet F the possfand whace $x=0$
for or Tert action in which sevies a athit impedanceszi \& z_{z}
 Ro is rel the sectown

$$
z_{0 \pi}=\frac{z_{i} z_{i}}{z_{01}}
$$

Tor constant-ksodiens

$$
F_{\text {on }}=\frac{R_{0}^{2}}{Z_{0}} \text { wheie } R_{m}=\xi_{1} z_{z}
$$

 Constont: Lo poselter

(a) Design impedance $\left(\mathrm{R}_{0}\right)=$

For scives aun, $Z_{i}=j u 1$
Fer shint awn $\psi_{z}=\frac{-j}{S C}$
$\Rightarrow z_{1} z_{2}=j 2 L \neq \frac{-1}{8 c}=\frac{1}{c}$ oheres sel \& contut

$$
\Rightarrow R_{e}^{2}=\frac{L}{C} \Rightarrow R_{0}=\sqrt{\frac{L}{c}}
$$

(b) Reactance eurves critell frepery expresions
f_{e} foe T s witlle the sume

$$
\begin{aligned}
& \quad z_{1}=j u ; z_{2}=\frac{-J}{\omega c} \\
& \Rightarrow z_{1}=\omega t \text { \& } z_{2}=\frac{1}{\partial C}
\end{aligned}
$$

Fre the wowes. pont A wike the culforevany

$$
\begin{aligned}
& \Rightarrow \frac{\omega_{c} \alpha}{4}-\frac{1}{\omega_{0}<}
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \quad \frac{N_{L}}{4}=\frac{1}{\partial C}
\end{aligned}
$$

(c) Variction of $z_{o n}$ and $z_{o n}$ with frequency:

Consides

114

$$
z_{r \text { er }}=\frac{z_{1} z_{2}}{z_{0 T}}=\frac{R_{0}^{x}}{R_{0} \sqrt{1-\left(\frac{f}{r}\right)^{2}}}=\frac{B_{0}}{\sqrt{1\left(\frac{f}{6}\right)^{2}}}
$$

 in paussbend.
 MPash d
(d) Vaructions of At emution Corstant a sith frepuenty:-

We thene $\operatorname{Sinh} \frac{1}{2}=\sqrt{\frac{z_{1}}{4 z_{2}}} \quad$ for LPF,

$$
\begin{aligned}
& z_{1}=j \omega L \\
& z_{2}=\frac{-1}{D C}
\end{aligned}
$$

But we lrecdy knos fos LRF OG $\frac{2}{\sqrt{L 6}} \quad \therefore \frac{1}{2 \pi}=\frac{\sqrt{L K}}{2}$

$$
\begin{gathered}
\left.\sinh \frac{x}{2}=\sqrt{\frac{\omega}{c}}\right)=j\left(\frac{f}{f}\right) \\
\Rightarrow \sinh \left(\frac{\alpha}{2}+\frac{\beta}{2}\right)=j\left(\frac{f}{f}\right) \\
\Rightarrow \sinh \left(\frac{\alpha}{2}\right) \cdot \cos \left(\frac{\beta}{2}\right)+j \cosh \left(\frac{\alpha}{2}\right) \cdot \sin \left(\frac{\beta}{\frac{1}{2}}\right)=\left(\frac{1}{6}\right)
\end{gathered}
$$

In pass boind $x=0$, in shophad $\beta=x^{*}$

$$
\begin{aligned}
& \therefore \quad \cos \frac{B}{2}=\cos \frac{\pi}{2}=0 \sin \frac{\beta}{2}=\sin \frac{\pi}{2}=1 \\
& \Rightarrow j \cosh \left(\frac{\alpha}{2}\right)=j\left(\frac{f}{f}\right) \\
& \alpha=2 \cosh ^{-1}\left(\frac{f}{f}\right)
\end{aligned}
$$

In Stepband, an frepueidy friceres above f_{c} Attenution also increajes.

$$
\begin{aligned}
& Z_{0}=T_{0} \sqrt{\frac{10^{2} L C}{4}} \quad \text { Bit Me thow } \theta_{e}^{22}=\frac{4}{4} \\
& \Rightarrow z_{\mathrm{CT}}=R_{0} \sqrt{-\frac{\partial^{2}}{\delta_{e}^{2}}} \quad \text { (0) R. } \sqrt{1-\left(\frac{f}{f_{6}^{2}}\right)^{2}}
\end{aligned}
$$

(e) Varuation of phosecrevt B with trejueny
we have

$$
\sinh \frac{\sqrt{2}}{2}=\left(\frac{f}{f}\right)
$$

(e. $\sin \left(\frac{\alpha}{2}\right) \cos \left(\frac{\beta}{2}\right)+j \cosh \left(\frac{\alpha}{2}\right) \cdot \sin \left(\frac{\beta}{2}\right)=j\left(\frac{f}{f}\right)$

In stopband $\beta=A^{*} 50 \beta$ to be caluted in pastbend when $\alpha=0$

$$
\begin{aligned}
& \sinh \frac{\alpha}{2}=\sinh 0=0 \\
\Rightarrow & j \sin \frac{\beta}{2}=j\left(\frac{f}{f}\right) \\
& \beta=2 \sin \left(\frac{f}{f}\right)
\end{aligned}
$$

Vution B \& with Areponcy
(4) Design Enitins ef Prototype Lois Pass Fitery

$$
R_{b}=\sqrt{\frac{L}{C}} \quad \text { \& } f_{0}=\frac{1}{\sqrt{\sqrt{C}}}
$$

Divde Bo bifo

$$
\frac{R_{6}}{R}=\frac{\sqrt{\frac{L}{K}}}{\pi \sqrt{\frac{1}{L C}}} \Rightarrow L=\frac{\frac{R_{0}}{(\pi)}}{\infty} \rightarrow \infty
$$

Multipying Rofe,

$$
\begin{equation*}
c:=\frac{1}{(\pi+)-R_{0}} \tag{2}
\end{equation*}
$$

 Shentiexm.

T-Setion

DDergn Impedmad R_{0}

$$
W_{0}=\frac{2}{2}=\frac{4}{c} \Longrightarrow \sqrt{\frac{L}{C}}
$$

 opt. the phot Be geves or stoplount:

$$
\begin{aligned}
& \Rightarrow \cos -\frac{1 \pi}{\operatorname{did} C}=0
\end{aligned}
$$

$$
\begin{aligned}
& 0=\frac{1}{\sqrt{2 C}} \operatorname{de}
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \text { Fior }=\sqrt{1-\frac{1}{4 x^{2} c}}
\end{aligned}
$$

who wind $\sqrt{\frac{z_{9}}{z_{2}}}$
"和 Hat.
$z=\frac{-3}{3} \& z=y$

$$
\Rightarrow \sin f=\sqrt{\frac{-x}{(\omega C)(4)(\omega L)}}=\sqrt{\frac{-1}{4 \omega^{2} 1 c}}=\sqrt{\frac{1}{2^{2} L^{4}}}=\sqrt{\frac{1}{d(\sqrt{C x})}}
$$

$$
\Rightarrow j \cosh \left(\frac{x}{2}\right)=j\left(\frac{f}{f}\right)
$$

$$
\alpha=2 \cosh \left(\frac{1}{h}\right)
$$

$$
\begin{aligned}
& \rightarrow \sin f\left(\frac{f}{2}=\left(\frac{t}{5}\right)\right. \\
& \Rightarrow \operatorname{inn}\left(\frac{\alpha x}{2}+5\right)=1\left(\frac{10}{7}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \rightarrow \sin \left(\frac{x}{2}\right) \cos \left(\frac{5}{2}\right)+j \cosh \left(\frac{2}{2}\right) \cdot \sin (x)=\sqrt{\left(\frac{r}{4}\right)}
\end{aligned}
$$

 * deeverier from tia.

 when ：必家

$$
\begin{aligned}
& y=2
\end{aligned}
$$

Rquelshmpes

$$
{ }^{2}{ }^{2}=\sqrt{\frac{C}{6}}
$$

Miltutu

$$
\begin{equation*}
\text { 家 }=\frac{1}{4 \pi+1 / 20} \tag{家}
\end{equation*}
$$

$$
\begin{aligned}
\frac{z_{1}^{2}}{4} & +z_{2}=\frac{m^{2} z^{2}}{4} m z_{2} z_{2} \\
m & =\frac{z_{1}^{2}}{4}-\frac{m^{2} z_{1}}{4}+z_{2} \\
\Rightarrow & =\frac{1-m_{2}^{2}}{4 m}+\frac{z_{2}}{m}
\end{aligned}
$$

midetived Bion pass fitter
We cent ofow: modared band pose tillo

$$
x_{0}=\sqrt{(w)(6)}=\sqrt{(a+c)}
$$

Also race cencor

$$
\begin{aligned}
& \left(\frac{6}{6}-h_{0}\right)=\frac{n-1}{\sqrt{-m^{2}}}
\end{aligned}
$$

Q Voritlian E E Wigh

m-arwer :

$$
\left(f_{x}-f_{i \infty}\right)=\left(x_{2}-\sqrt{1-m^{2}}\right.
$$

Pouve voltay and cund onctige

$$
\frac{W_{1}}{T_{2}}=\frac{E_{2}}{E_{2} I_{2}}=\left(\frac{I_{1}}{I_{2}}\right)^{2}=\left(\frac{E_{1}}{E_{2}}\right)^{2}
$$

indidexat

Expresher Aunaterns

新

Alteruative (indroftes

Relatar Eq neper Necticl.

$$
\begin{aligned}
& =\operatorname{mog} \mid
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow
\end{aligned}
$$

$$
\begin{aligned}
& =E_{2}\left(\frac{E L}{R}\right)=\frac{E_{2}}{\pi}
\end{aligned}
$$

Athenuetor: Notworks:-
A. Atteructo netuonk muse fullut Therng conditines:
(1) It must give covide intit inpolante
(2) 连 mat give canct ouput motive
(2) It should peovide spactice allenuationo

$$
\Rightarrow N=A n t h\left[\frac{10}{20}\right] \text { neper }
$$

Methedth
 am impacoug of ghan

$$
\begin{equation*}
\Delta \frac{q_{1}}{L}=R_{0}\left[\frac{e^{\frac{4}{x}}-e^{2}}{e^{2}+e^{2}}\right] \tag{6}
\end{equation*}
$$

mutity numb din ty NH\%

$$
\frac{B u}{2}=p\left[\frac{e^{2}}{e^{2}+1}\right]
$$

$$
\Rightarrow \frac{R}{2}=R_{0}\left[\frac{N-1}{N+1}\right]
$$

Methid
Win the figuse
4y unie cawnen ilinder nuly

Fot 等grantuce nitidita．

$$
N=\frac{T_{0}}{I_{2}}=\frac{R+B_{3}+\frac{R}{2}}{K}
$$

For fonpery trininded nothork

$$
\begin{align*}
& \frac{2}{2}=\left(\frac{N-1}{4+1}\right)
\end{align*}
$$

$$
\begin{align*}
& R \mathrm{R}-\mathrm{D}=\mathrm{R}+\mathrm{R}_{6}\left(\frac{\mathrm{~N}}{\mathrm{~N}} \mathrm{~N}_{2}\right) \\
& \text { 程 }\left(N^{2}-B^{2}\right)=R_{0}(N+1)+(N-5) \\
& \text { 篡 } \left.=\frac{2 N}{N^{2}-1}\right]
\end{align*}
$$

Alleniutici

$$
\begin{array}{r}
\Rightarrow R_{A}=\left[\frac{\left.N-\frac{1}{N}\right]}{2}\right]=\frac{R}{2}\left[\frac{N-1}{N}\right] \\
\\
{\left[\frac{N-1}{2 N}\right]}
\end{array}
$$

$$
\begin{aligned}
& 2+2=\left[\frac{e^{2}+1}{4-1}\right] \\
& 212=\left[\frac{N+1}{1+1}\right]
\end{aligned}
$$

$$
\text { 年. } \frac{z_{1} z_{3}}{\sqrt{z^{2}+y_{1}^{2}}}
$$

$$
\text { 8 } e^{x}=1+\frac{z}{z+\frac{z}{z}} \frac{z}{z_{0}}
$$

$$
\begin{aligned}
& R_{1}\left[\frac{1}{1}-\frac{B_{2}^{2}}{N_{x}}\right] \\
& \text { Bi }[4
\end{aligned}
$$

$$
\sum^{\infty}=N=1+\frac{6}{2 W_{2}} \frac{\text { 党 }}{2 \%}
$$

$$
\begin{align*}
& \Rightarrow 2 \mathrm{H}_{\mathrm{N}}-2 \mathrm{H}_{2}-\mathrm{Ka}_{2}+R_{0}-2 \mathrm{~K}_{0} \\
& 2=3(2-1) \cdot \sigma \cdot(N+1) \\
& 2 N 2=\left[\frac{N+1}{N-1}\right] \tag{2}
\end{align*}
$$

$$
\begin{aligned}
& (N-1)=R_{0}\left[\frac{N-1}{R_{0}(N+1}+\frac{1}{R_{0}}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \left.\Rightarrow \quad n=\frac{N^{2}-1}{2 N}\right] \quad\left(x^{2}\right]
\end{aligned}
$$

Fa Tandoutas,

$$
N=\text { Antiog }\left(\frac{12}{20}\right)=1 \operatorname{tiog}(20)=3
$$

Meltwed of
fernocily in bridned T Atovitueg sech

Bradgo I sllemation
Fthive，

Fron（2）

$$
x=\left[\begin{array}{ll}
x=\frac{k N}{*}+1
\end{array}\right]=\left[\begin{array}{l}
R \\
R
\end{array}\right]
$$

4nsen

$$
\begin{aligned}
& N=\left[\frac{1+9}{x+x^{4}}\right] \\
& \frac{\text { Re }}{\text { R }}=(\mathrm{N}+\sqrt{2}) \\
& R_{A}=R_{0}(N-1) \quad R_{B}=\frac{B_{B}}{N-1)}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\text { Rag }}{\text { 阿禺 }}=(N-1)
\end{aligned}
$$

Me．thode 2 F

$$
\begin{align*}
& \frac{I_{i}}{I_{2}}=\mathrm{N}=1 \% \frac{\text { 量 }}{T_{5}} \\
& F_{B}=\frac{R}{\left(\mu-1 \frac{1}{2}\right.}
\end{align*}
$$

Frome sycte

$$
\begin{aligned}
& \Rightarrow \frac{I}{I_{i}}=N \div \frac{\mathrm{ker} \text { ma }}{\mathrm{m}}
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \mathrm{F}_{\mathrm{N}}(\mathrm{~N}+1) \text {) }=(\mathrm{N}-\mathrm{C}) \\
& F=R\left[\frac{N-1}{N a}\right]=\cdots
\end{aligned}
$$

$$
\begin{aligned}
& R_{\text {B }}=\left[\frac{N+1}{N-1}\right] \ldots
\end{aligned}
$$

UNIT-586
D. C. Machines (EM-I)
5. DC Not os Gerevetors

A Machine that converts mechanical energy (or Power) into Electrical Energy (or Power) of d ic Nature is called D Generator. The basic principle of working of a do generator is Forodays law of Electro Magnetic Induction, which state that; whenever a conductor ait the magnate field flux, dynamically induced emf is produced This emf causes current to flow the conductor circuit is dosed.

The basic essential pats, of electrical gentator are
(1) Magnetic field.
(2) Conductor

The direction of induced emf depends upon the direction of nignitified and the direction of motion and is given fy fleming s right hand rule.

A de. Machine that converts electric energy (o) Power) into mechonal energy (a, Power) is celled a dc. Motor. The dec. Motor basically works on the principle that when a current caving conductor placed in amingetio field, mechanical force acts on the current carrying conductor.

Construction of DC Machine :
A DO Machine consists of

(vii) Brushes and Bearings:

cross -Sectional Area of a D Machine.
(1) Yoke: The outer frame 60 yoke serves two purposes.
(i) It provides mechanical support to poles \& protective coves for whole machine.
(i) It cries magrectecflus produced by poles.

For small machines yoke is made of cest-iron, but for large machines cost-sted (d) Rolled steed is used.
(2) Pole core and Pole shoes:-

The field magnets consist of pole cores and pole shoes: pole core is usually of oracular section They are mede of cost steel (o) wrought iron lamentations and are fixed to the yoke They carry coils of insulated copper wires carrying the exciting current.
Pole sher sew eve two purposes. 0) Thin spread out the flux in the airgap (a) They support the field coils.
(3) Field Coils: The coils of copper wire wound round the poles ave celled the field cols as pole coils when current is passed through these cols, they Electramagnetise the poles which produce the necessary flies trot is cut by the revaluing armature conductors.

Working principle of D.C Generator
Figure shows the schentie diagram of a Simple machine consisting of a Col ABCD moving about it oust ares in a magnetic field provided by either permanent magnets (e) Electromagnets, The ends of the coll are connected to two slipping, au \&b pied onshfo The brushes by \& B_{2} (8 carbon (r) Copper) press against the slopxings: Their function is
 to collect the correct induced in the coil and to convey, It the exteinolload.

The rotating coll may be culled the armature and the magnets as field magnets.
Working :
when coil is rotating in dock wise directions the flux linking the coil changes continuesly and hence, an emf induced in the coil. when calls at position 1 iercolls vertical, the flex linking the cat is maximum, but the rate of change flux linkages is minimum- The reason is That, intis position the col sids $A B$ \& $C D$
 don't cut the flux ie, they we more parallel to them. There fore emf induced in. the coil as zero. This is the stating positions.

As the coil condrums moving, the rate of cage of flux linker (s hence emf in it) increase grodudy till position 3 is reached where $\theta=90^{\circ}$, Here the cor plane is parallel to the lines of flux, the flue linted with the colts mourum, but rate of change of flux linkages is maximum. Hence maximum emf is induced in the coll when in this position.

In the next quarter revolution ie, from 90° to 180° the flux linked with the cot grodudly increases, but the rate of change of flux linkoses decrease. Therefore induced emf decreases gradually till position 5 0 the cm it. It reduced to zero value.

So, in the first holt revolution of the coil, no emf is induced ind, when in portion 1, maximum emf induced when in position 3 , \& no emf induced when in position 5. The direction of induced enif can be determined by applying fleming Right hand rule which gives direction foo A ta B \& EtD. Hence the direction of current from is $A B M L C D$ we current through load R Hows from M to L.

In the next half revolution, "e, for 180° to 360°, the variation in the magnitude of emf are similar to those in the first revolution. It value is maximum when in position 7 and minimum when in portion 1 . It is seen that direction of induced current is fem D \& \& BAA. Hence the path of current flow is along DCLMBA \& current through lond R. \& from L LO M .

Therefore we can observe that the curved which we obtain from Such a simple genostor reverses its direction after every half revolution. such a current is called Alternating current.

For making the flow of current into unidirectional in the external circuit, the slip rings ave replaced by split rings. These split rings made of conducting cylinder which cut two halve r segments insulated form each other by a thin sheet of mica.

So in the first half revolution current flows along ABCMCD ter brush a, which is in contact with segment s_{1} and brush b in contact with segment S_{2}. Therefore brush a is positive \& is negative end of supply.

In the next half revolution, the direction of induced fivinent in the carl is reversed But at the same time the positions $s_{1} \& s_{2}$ ale oo reversed that is burs a io contact with segment $S_{2} \&$ Bright b with segment siHence the current in the load gown flows from L to M.

Production of Torque in DC Machine:-
The flow of Direct current in the fold winding of a DC. Machine create a magnetic flux distribution called the field flux, which is statimaty wort the stator similarly the effect of the commutator, in a domachine is such that direct current flows Through the brushes, the armature crete a mogniete flux distribution celled as olenature flux, which is fixed in Apace. The armature flux \& field flux ale perpendicular and their interaction creates the torpue. The tapis is the result of the tendency of these 2 olive distribution e to olignaley. same aus. If the machine is acting as a generator, this torque opposes the rotation produced by the driving torque of the primemoves. This phenomenon also conforms to lings law, as the torque opposes the very cavie of to production, that is, the emf and curvier generated by volition If the dc machine is working as motor, the electromgnetc torque is developed due to field flux and armotion flue produced by the xe current fed to the armature from the external dc source, and the rotor almative Stacte to rotate in the same direction as the electromegnitic forgive.

Armature windings:
classified accoding to the commutolor syiment cometions.
(1) Lap winding Progrexive winding:
(2) Wave Dinding.
(1) $\angle A P$.

No of poodel pather.
for a gut sye ocm ptive muye ct inhe: ent induad as lesi/pullepty.

LV \& HO Epipnt
(2) WAVE

Ep preilel pith dssebuted symettically ons de the phes HiV \& L ot Egipred
\rightarrow Hin arapen tianglel. e emf destact

Diffarncos:

(1) Number of pacild pats Equel to Nurbes of ples
(2) The Number of bruch poitions on the Comentatas ejuls the number of poles
(9) The two ents fof ampliee cost are conncled to the too alacent combitigyt
(4) The winding foru a continues closed do.
(5) The lop obine gevetor une te sypthy Low villge \& High current Leads.

Wave winding
(1) Number of paellel puth ave dixys two
(2) A minimur of two brihh postions ax reyured irrespective of the of polel.
(8) The two end of an armatues col aek comectel to the for coullis synuts whichous two pole pitches pait.
(4) The winding pors a conticuse dofed chf.
(3) The wove wind'gerevilo an ured 0x aytgy high U Itegr, hew cusiont toult

Exprexim for geneited emf:-
Princple Foredays Lows I Electompetie Tuduction.
 such as to cit the mignictic flux.

Let it ϕ - useful fiux poe pole in ub
$2 p$ - Total number of poles
Z - Total number of ametue conductos
N - Speed of the armature in revolutions per min (xpin)
E Total enf genculd
Then
Avege enf genetul per conducte:

$$
e=\frac{d(N \phi)}{d t}=\frac{d \phi}{d t} \text { Nott, if } N=1 \mathrm{xp}
$$

When aratue complet one vevidin, each ond in the airetwe aite a flux of $2 \rho \phi$. No of revolution mode by sematuc/ $/ \mathrm{sec}=\frac{\mathrm{N}}{60}$
\therefore flix aut by each ond in one secod is
\Rightarrow flow cul/rev \times Number of revol/sec

$$
\Rightarrow \quad 2 \rho \phi \frac{N}{60}
$$

Avege emf generiles.

$$
e=\frac{\alpha \phi}{d t}=\frac{2 p \phi N}{60} \text { yolt. }
$$

If $2 a$ is no of pardlel puthe, then in of cond in seues/pulijpth it $\frac{Z}{2 a}$ Then avege enf across browh $=1 P \frac{N}{60} \times \frac{Z}{\mathrm{pa}}$
emf genected in do mackine, $e=\frac{4 z N}{60} \frac{P}{A}$
$A=P$ in Lap.
$A=2$ in wave

CLassfication of D C Machine
D．C Machine
 D．C．Generator

．
Cumalative compound Differential compoind

shent
compound

Long shunt
D C：Genexator ir

Series henerator

$$
V=E-I_{a}\left(R_{a}+R_{s c}\right)
$$

$$
\text { P党 E } I_{a}
$$

$I_{a}=I_{s e}$
10° 年

Shuint Gerestior：－

$$
\begin{aligned}
& V=E-I_{a} R_{a} \\
& P=E \cdot I_{a} \\
& I_{L}=I_{a}-I_{s h} \\
& I_{s h}=\frac{V_{S h}}{R_{s h}}
\end{aligned}
$$

$I_{\text {sh }}=\frac{V_{\text {sh }}}{R_{\text {sh }}}$ Long shunt：

$$
\begin{aligned}
& V=E-I_{a} R_{a}-I_{L} R_{s c} \\
& I_{a}=I_{s h}+I_{L} \\
& I_{s h}=\frac{E-I_{a} R_{a}}{R_{s h}}
\end{aligned}
$$

$$
\begin{aligned}
& I_{a}=I_{s h}+I_{L} \\
& V=E-I_{a} R_{a}-I_{a} R_{s c} \\
& I_{s h}-\frac{V_{h h}}{R_{s h}}
\end{aligned}
$$

Comporind Generator：－

Characteristics of DC Generator
o. C. ©f shunt pererdor (Magnetization/No-Load charactuistics)

Sepertly Excited Machine

Self Excited Machine

Load characteristics

Series cerenator :

1) $\quad \theta C C$ charctevstic (E_{0})
2) Induced emf (E) at No lead
3) Intencal voltge drop ($\left.I_{a}\left(R_{a}+R_{3}\right)\right)$
4) External charactecistics ($E-I_{a}\left(R_{a}+R_{t e r}\right)$ Compound Generator:
(1) Shunt Field Alne (Exteand chevechustia) drooping
(2) Seres fild Ane (rising chardeysitce)
(3) Level compoind $\left(V_{N N}=V_{T R}\right)$
(4) over comprind (strong series fiel,,$V_{T} \uparrow-I_{1} \uparrow$)

Losses in a DC aerator -
(1) Copper losses \qquad Armature copper losses ($\mathrm{I}_{a}^{2} \mathrm{Ra}$) W shunt field copes loges $\left(I_{s h} R_{s h} / V I_{s h}\right)$ w Series field copper lases I_{c}^{2} R ac W
(2) Iron loses (Magnetic / core (eds) \qquad Hysterics's lories $W_{h}=2_{B} B_{m} f_{0} N$ Wats Eddy current loses $W_{e}=B_{e}^{2} f^{2} t^{2} v$ wats
(3) Mechanical losses \qquad Friction losses at bearing a commutator Windage losses of rotating armature
Ironlors + Mechanical loss combined together culled stray losses.
For short \& comprind geneuber, field copper losses ave cont ant: $\}$ constant loves Total losses a Armature sic las t constant loses

Power stages:-

mechanical, $2_{m}=\frac{\text { Total wall generated in armature (} \mathrm{EJo} \text {) }}{\text { Mechanical power supplied (Ip) }}$
Electrical $\eta_{e}=\frac{O / P}{I P}=\frac{U I}{E I_{a}}$
overall cor commercial $\eta_{s}=\frac{V I}{M / I_{1} / P}$

$$
2=2_{m}+2_{e} \quad 95 \%
$$

Problem: (DC Generator)
a) A sixpole, Wave connected armature has 200 conductors and runs at 1500 rpm The emf generated th open circuit is 600 V hind the useful fur people:
b) An eight pole, Lap connected oarratur has 800 condudeuy a flux of $0.05 \mathrm{mb} / \mathrm{pole}$, and a Sped of 500 xpm . calculate the emf generated in the open circuit
c) If the armature in (b) is wave connected, at what ped nut it be diver togeneat 400v?
d) A four pole generator has a flux of $0.05 \mathrm{Jb} / \mathrm{pole}$ and a lap 6 mated a mature with 600 conductors. Find the emf generated in the open circuit at 800 ppm : sol -

We know $E=\frac{\phi Z N P}{60^{\circ} \mathrm{A}}$
a) $\quad \Phi=\frac{E \times 60 \mathrm{~A}}{Z N P}=\frac{600 \times 60 \times 2}{200 \times 1500 \times 6}=0.04 \mathrm{wb}$
b) $E=\frac{0.05 \times 800 \times 500 \times 8}{60 \times 8}=333.33 \mathrm{~V}$
c) $N=\frac{E \times 60 \mathrm{~A}}{\phi Z P}=\frac{400 \times 60 \times 2}{0.05 \times 800 \times 8}=150 \mathrm{rm} \quad \mathrm{Cl}$
d) $E=\frac{000 \times 600 \times 800 \times 4}{60 \times 4}=400 \mathrm{~V}$
2) A 4 pole shunt generator with lap connected armature having fill and Armature Rensinces of 100Ω and 0.05Ω repectivdy supplies $100 \mathrm{tam} \beta$ e och vatic $40 \mathrm{~W}, 200 \mathrm{~V}$ calculte total armature current, the aimatue current pes path, \& emf generates. Assume constant $1 \mathrm{~V} / \mathrm{bush}$ drop sol y

$$
\text { Given } P=4 ; A=4, R_{a}=0.05 \Omega, R_{s c}=100 \Omega \text {, brush dep }=2 \mathrm{~V}
$$

Total lond current It $\frac{100 \times 40}{200}=20 \mathrm{~A}$
$I_{s h}=\frac{V}{R_{s h}}=\frac{200}{100}=2 A$
$I_{a}=I_{1}+I_{5 h}=20+2=22 \mathrm{~A}$

$$
\text { current/poadel pith }=\frac{I_{a}}{A}=\frac{22}{4}=5.5 \mathrm{~A}
$$

$$
\text { Genoeded emf } E=V+I_{a} R_{a}+V_{\text {brashdopp }}=200+22 \times 0.05+2=203.1 \mathrm{~V}
$$

(3) A series geiecoator is delivering 5 kw to heater lond at 200 V when petting at 1000 ypm If the sped es raved to 1200 xpm \& the power delivered to the some heater 6 Cad increases to 6 kw , determine the armature current and the Voltage across the lad. The toes amitue and series field resistance of the gerenstor is 0.5 N. Sol. - Given

$$
\text { Loo od }=5 \mathrm{kN}=5000 \mathrm{~W} \quad V=80 \mathrm{y} \quad \mathrm{Ba} \quad R_{\text {se }} 0.5 \Omega
$$

Than $N_{1}=1000 \mathrm{Ppm}$: $\mathrm{N}_{2}-1200 \mathrm{PPm}$
$I_{o_{1}}=\frac{5000}{200}=25 \mathrm{~A}$

$$
V_{\text {day }}=25 \times 0.5125 \mathrm{y}
$$

Gencoted emf:

$$
\begin{aligned}
& \text { eneated emf: } \\
& R_{1}=V+I_{a} R_{a}=200+12.5=212.5 \mathrm{~V} \\
& \text { Load y } I_{I_{4}} R_{L}=(25)^{2} \times R_{C}=5000 \mathrm{~W} \\
& R_{C}=\frac{5000}{625}=8 \Omega
\end{aligned}
$$

When power delivered $6000 \mathrm{~W}=I_{a}^{2} R_{L}$

$$
\Rightarrow I_{q}^{2}=\frac{6000}{8} \Rightarrow I_{q_{1}}=\sqrt{\frac{6000}{8}}{ }^{2}{ }^{27.386 \mathrm{~A}}
$$

We know

$$
E_{1} \propto \phi_{1} N_{1}
$$

$$
\text { for series generator, } \phi, \infty \text { Ia }
$$

$$
\Rightarrow E_{1} \propto I_{a i} N_{1}+\|^{\delta_{g}} E_{2} \propto I_{a} N_{2}
$$

$$
\therefore \frac{E_{2}}{E_{1}}=\frac{I_{a_{2}} N_{2}}{I_{1} N_{1}} \Rightarrow E_{2}=E_{1} \times \frac{I_{a_{2}} N_{2}}{I_{0} N_{1}}=\frac{27.386 \times 1200}{25 \times 1000} \times 212.5=279 \cdot 94
$$

4) A APPle, 400 V , shunt generator has 720 wave connected conductor in to aemetuie the Full $60 d$ current is 80 A and the flue pole is $0.03 \mathrm{wh} R_{a}=0.1 \Omega \&$ contact drop 11 lbwh calculate the full load speed of the motor.
Sol: Given, $P=4 ; A=2 ; z=720, I_{L}=80 A ; \phi=0.03 \omega \mathrm{~b}$, Brush dap $p=2 V ; V=400 \mathrm{~V}$

$$
\begin{aligned}
& E=\frac{\phi z N P}{60 \mathrm{~A}}=\frac{0.03 \times 720 \times \mathrm{N} \times 4}{60 \times 2} \Rightarrow 390=0.72 \mathrm{~N} \\
& \Rightarrow \quad E N=\frac{390}{0.72}=541.67 \mathrm{rPm}
\end{aligned}
$$

6. DC. Motor.

If the armature terminals of a machine are connected to. a dc source, It begins to rotate and operate like motor. convecting dectral Energy into mechanical snegy construction wise, donator is silas to a $D C^{\text {genestor since the former has to operte in stringent snveranmental conditions, }}$ It has to be protected against moisture, fire hazards, chemicelgares and mechanical dariager. Therefore, the fane of a dc motor is ether fully partially closed to provide sufficient protection and is made flame proof.

Principle of operation:
It operation is based on the principle that, "whenever accurrent carrying conductor placed in a magnetic field, it will experiences a force whose direction is given by ftemings left hand rule.

(1) Poe Fid

(2) conductor Field.

(3) Free

Resultant field gore oction

On the uperside of the compuctox in fig (3) the magnetic lines of force and field exist arousing the conductor are additive, white on the lower side the ge are substractive. This explains the resultant field is strengthened above and ulekend below the conductor.

From the fy (3) shows that the conductor has a force on it which tends to move it downureds. This displays the force ace in the duecton of the weaken field. When the current in the conductor is reversed the direction of force is also reversed as shown in figure (4)

The force (F) developed in the conductor is g ven by the relation $F=B I \mathrm{~L}$ Newtons
where B-Flux density $i n \quad 0 \mathrm{~b} / \mathrm{m}^{2}$
I -Current in amperes:
I - Imine Ω 而

Now, consider the magnetic field of a demeter in which these is no current in the armature conductors figure 0

When, the armature conductors caver current. All the conductor under North pole are assumed to cary current uploads (dots) and those under swath pole to carry current downward (roses). Each of th conductor cary a magnetic field which, when supectimposed on the mainfreld. Therefore, main magntsifield is distored as Shown in second figure,
Each conductor Exposiances a force F, which tends to rotate the endure. in dock wise direction. All there Forces ode together to produce a diving targe which ste the armature stating:
Types of DC Motors
(1) Series wound Motor
(2) Shunt wound Motor
(3) Compound wound Motor

Back (e) Counter EMF -
when the Motor armature rotates, the amature conductors cut the fluid and as a result an emf is thluced in them.

The direction of this emf induced us opposite to that of the applied voltage, V, So it is called as Back Counter en, denoted by Es

The magnitude of the back emf may be calculated from the same. emf equations used foe generator.

$$
E_{b}=\frac{\phi z N}{60}\left(\frac{P}{A}\right) \text { Volts }
$$

Voltage Equation of DC. Motor:
The voltage applied across the oumature. to (a) overcome the backenf, E_{b}
(ii) Supply the armature ohmic drop, ta Ra

$$
\therefore \quad V=E_{b}+I_{a} R_{a}
$$

This is known os voltage Equation of Motor
where E_{5} - pack emf
ϕ - fluxpole in ab
N -speed in revolutions, rpm
P No of poles
A $-N_{0}$ of parallel paths
z - Total number of conductors.
 where,
V - Applied Voltage
To - Armature current
Ssh - Shunt field current
E_{b} - back emf
R_{a} - Armature Resistance
$R_{s h}$ - shunt field Resistance
Power Relationship in a Motor:
The Electrical power supplied to the armature is VIa (armature If) \&

$$
\begin{aligned}
V T_{a} & =\left(E_{b}+I_{a} R_{a}\right) \cdot I_{a} \\
& =E_{b} T_{a}+I_{a}^{2} R_{a}
\end{aligned}
$$

\qquad
\qquad Electrical power wasted an amour: (copper los namitue) Electrical Equitant of Mech power in amour
A. out of the armature I/P, a Small potion is posted as $T_{a}^{2} R_{a}$ and the remainder is avaible as Mech powell in oendues.

$$
y P_{m a}=V I_{a}-I_{a}^{2} R_{a}
$$

speed of d c. Motor
When a motor is souring, the backenf is clays less than the applied volige
 \square

As Z, P \& A oo r constants,

$$
\begin{equation*}
\epsilon_{6} \propto N \tag{c}
\end{equation*}
$$

$$
N \propto \frac{E_{6}}{\phi}
$$

(Flux control)
Therefore the speed of a d.c.Motrs s directly propational to E_{6} and inveesly proportional to flax loo. ϕ

$$
\begin{aligned}
& E_{b}=V-I_{a} R_{a} \\
& \Rightarrow N \propto \frac{\left(V-I_{a} R_{a}\right)}{\phi} \quad \text { (Armature control) }
\end{aligned}
$$

If initial values of speed, flux pee pole \& backerfare $N_{1}, \phi_{\&}$ \& E_{b} \& Final values are $N_{2}, \phi_{2} \& E_{b_{z}}$
Then

$$
\begin{aligned}
& N_{1} \propto \frac{E_{b_{1}}}{\phi_{1}} \quad N_{2} \propto \frac{E_{b_{2}}}{\phi_{2}} \\
& \frac{N_{2}}{N_{1}}=\frac{E_{b_{2}}}{E_{b_{1}}} \times \frac{\phi_{1}}{\phi_{2}}
\end{aligned}
$$

For sever Motor, $\frac{N_{2}}{N_{1}}=\frac{E_{b_{2}}}{E_{b_{1}}} \times \frac{I_{a_{1}}}{I_{a_{2}}} \quad\left[\phi_{1} \propto I_{a_{1}} \& \phi_{2} \propto I_{a_{2}}\right]$
For shunt Motor $\frac{N_{2}}{N_{1}}=\frac{E_{b_{2}}}{E_{b_{1}}} \quad\left[\cdot \phi_{1}=\phi_{2}=\right.$ constant $]$

sit bra

Torque in a DC Motor:-
General defination: "Torque means the turning 6 twisting moment of a force about an axis"
Torque is measured by the product of Force and the radius of which this force actsconsider a whee of radius (r) meter acted upon by a circumfential force Newtons as shown. Let this force cause the wheel to rotate i N Nos.

Torque, TEFl Newton-metess

$$
\begin{aligned}
& \text { Work done per revolution }=\text { Force } x \text { distancemoved } \\
& \qquad F \times 2 \pi \times \text { Joule }
\end{aligned}
$$

$$
\begin{aligned}
& \text { z F } \times 2 \pi r \text { joule } \\
& \text { Work done per second }=F \times 2 \pi \gamma * N \\
& =(F \times x) \times 2 \pi N \\
& =T \times 2 \pi N \text { Julasec }
\end{aligned}
$$

Armature Torque.
 Pour($)=T \cdot \frac{2 \pi N}{60}=0.105 \mathrm{NT}$ ode
Let T_{α} be the torque developed in $N \omega-m$ by the motor armature rounding of N

$$
\begin{align*}
\text { Power developed } & =\text { Work dane per Second } \\
& =T_{a} \times 2 N \mathrm{~N} \text { Wits } \tag{1}
\end{align*}
$$

Electrical power converted int mechanical power in the armature $=E_{6}$ Ia wale (2) comparing (1) \& (2)

$$
T_{a} * 2 \pi N=E_{b} I_{a}
$$

shaft Topping
The Torque which is available at the motor shaft for deng useful work is know as Shaft Torque \& denoted by "Th"

$$
\begin{aligned}
T_{a}=\frac{E_{b} I_{a}}{2 \pi N} & =\frac{\phi Z N P \times I_{a}}{2 \pi N \cdot A} \\
& =\frac{1}{2 \pi} \times \phi Z \cdot I_{a}\left(\frac{P}{A}\right) N \omega m
\end{aligned}
$$

" $T_{s h}$. $T_{a}-T_{f}$

$$
\therefore T_{a}=0.159 \phi z I_{a}\left(\frac{P}{A}\right) N-m
$$

$\because Z, A$ are constant for a peticularmachine, $\therefore T_{a} \propto \phi I_{a}$
series motor $\rightarrow T_{\alpha} \propto \not T_{\alpha} \Rightarrow T_{a} \propto I_{\alpha}$
shuntmotor $\rightarrow T_{a} \propto I_{\alpha}$
(3) N / T charactenstics with the help of I / I_{a} curve \& $N-I_{L_{D}}$ curve we can drat the N / T characteustic curve. As the Torque increases, speed decreases.

DC Shunt Motor:-

(1) TIa Charactesustes-

$$
T_{a} \propto \phi I_{a}
$$

$\because \phi$ is constant in shit motor, $T_{a} \propto I_{a}$
C Curve ss a st tine passing through the origen. shaft torque is less then armature torque.

(2) N / I_{0} characteristics.

$$
\begin{aligned}
& N \propto \frac{E_{b}}{\phi} \quad \\
\Rightarrow & N \propto E_{b} \quad[: \phi \text { constant }]
\end{aligned}
$$

(3) N / T characteristics :-

From $T / I d \& N /$ I. characteristics \rightarrow

DC Compound Motor:

cumulative compound.
Series field aids shunt field, $\phi /$ pe \uparrow as $I_{\alpha} 1$ \& curve between shunt \& serves (where $\phi \propto \pi$) Differential compound:
With increase of Load, Armatueedeop (Tara) i which tries to decrease speed but at the same time: demagnetizing effect of I_{a} \& Series field trier to decrease Excitation twins, \Rightarrow Net increase in speed.

Necessity of starter:
The current drawn by the motor armature is given by $I_{a}=\frac{V-E_{b}}{R_{a}}$ When motor is directly connector to the supply. there is no backemf in the segining to oppose the supply voltage The result is that heavy airrent will flow through the armature conductors and will damage it since resistance of motor asmetur is very lows.

Therefore, the starting armature current $I_{\alpha}=\frac{V}{R_{0}}$
for g. consider a $5 \mathrm{HP}, 220 \mathrm{~V}$ motor having armature resistance of 0.5 s
full loud current $I_{f}=\frac{5 \times 746}{220}=16.95 \mathrm{~A}$
stating current, $I_{s}^{\prime}=\frac{220}{0.5}=440 \mathrm{~A}$

$$
\frac{I_{5}}{I_{4}}=\frac{440}{16.95}=26
$$

$I_{s}=26 I_{f}$ [That means, stating current is 266 mme FLan]
This high current will cause high spacing at the commutator. It effect would be to daniage the segments \& burn the brushes:
So in order to avoid Excessive current at starting, a variable resistance is added in serves with the armature for the duration of starting period only. It limits the starting current to safe Value. The stating resistance is gradually cut in steps as the motor gains speed and develops back emf: and wltimatly when motor attainging to Normal speed the striating resistance is totally out out for the armature orcait.

Three point starter -
The figure shays the 3 -point states for a dc shunt motor with protective. devices. The $\$$ terminds of the states $A, B \& \subset$ are connected to the Positive line, shunt fell \& Armature terminalerespectively.
 moved ones to find stud, the starting resistance is cutout of armature circuit insteps: when the handle comes in contact with final stud, entire R_{s} is cutout of armaturecict.
No- Volt: Release coil (NVRC, E)
If consists of Electromagnet connected in series with field winding and therefore cavies field current There is a softiron piece s: attached to the arm which in full "ON wv punning position is attracted and held by the "No volt Release".

Now When supply foils, (0) gets disconnected the electromagnet demgnotsos and so releases the setting arm, which goes back to off position due to spring altar to it and get disconnected from supplymeins.
Over-Load Release coll (OLRC, M) :-
It is compacted in series with the motor and corries the full blood current. If the motor becomes viesloded beyond certain value, then D is Lifted and short circuits the NVRC. The coildemgenitises and the starter arm is released to off portion with the action of spring attached to at and the motor is automatically disconnected from the supply.

Efficiency (2) when running as a Motor

Load current cat which 2 is required I
Armature current $\left(I_{a}\right)$
Motor Input
Armature copper losses

$$
\begin{aligned}
& =I-I_{s h} \\
& =V I \\
& =I_{a}^{2} R_{a}\left(I-I_{s h}\right)^{2} \cdot R_{a} \\
& =P_{\text {constant }}+\left(I-I_{s h}\right)^{2} \cdot R_{a}
\end{aligned}
$$

Total Loses

$$
\begin{aligned}
M_{\text {motor }}=\frac{\text { Output }}{\text { Input }} & =\frac{\text { Input }- \text { Total loses }}{\text { Input }} \\
& =\frac{\left\{V I-\left[P_{\text {constant }}+\left(I-I_{\text {sh }}\right)^{2} R_{0}\right]\right\}}{V I}
\end{aligned}
$$

Efficiency (?) When running as a generator:
Load current at which n is segued $=1$
Armature current (Ta)

$$
=I+I_{S h}
$$

Genecator Input

$$
\begin{aligned}
& =V I \\
& =I_{a}^{2} R_{a}=\left(I+I_{S h}\right)^{2} \cdot R_{a} \\
& =P_{\text {content }}+\left(I+I_{S h}\right)^{2} \cdot R_{a}
\end{aligned}
$$

Armature copper loses
Total loses

$$
\begin{aligned}
\sum_{\text {Generitoy }}=\frac{\text { Output }}{\text { Input }} & =\frac{\text { output }}{\text { output }+ \text { total losses }} \\
& =\frac{V I}{\left[V I+\left\{P_{\text {outer }}+\left(I+I_{S h}\right)^{2}-R_{a}\right\}\right]}
\end{aligned}
$$

Power stages

$A-B=$ Copper lases
$B-C=$ Iron \& friction Loses
overall $\eta_{\mathrm{e}}-\frac{C}{A}$
electrical $\eta_{e}=\frac{B}{A}$
Mechanical $\eta_{m}=\frac{C}{B}$
(3) A de Motor having a terminal voltage of 230 V and the armature ament of 50 A has a back emf of 225 V , calculate
(i) Armature resistance
(i) Power developed in motor in watt:
(iii) Pourer developed in motor in Horse power

Sol

$$
V=230 \mathrm{~V}, I_{a}=50 \mathrm{~A}, E_{b}=225 \mathrm{~V}
$$

$$
\begin{equation*}
R_{a}=\frac{V-E_{b}}{I_{\alpha}}=\frac{5}{50}=0.1 \Omega \tag{i}
\end{equation*}
$$

(ii) Power in wats $\& E_{b} \times I_{a}=225 \times 50=11.25 \mathrm{KW}$
(ii) Power in Hose tine $=\frac{E_{s} I_{a}}{746}=\frac{11,250}{746}=15 \mu \mathrm{P}$
(4) Determine the value of torque in. $\mathrm{N}-\mathrm{m}$ established by armature of 4 -Pole motor having 750 conductors, two parallel paths 20 mull pole when $I_{a}=60 \mathrm{~A}$.

$$
P=4, Z=750, A=2, \phi=20 \times 10^{-3} \omega b, I_{a}=60 \mathrm{~A}
$$

$\therefore 0008+8 \cdot 0 \cdot 0^{\circ} ; \quad T=?$
18. We know

We know $T=01599 \boldsymbol{T} I_{0}\left(\frac{P}{A}\right) \quad \mathrm{N}-\mathrm{m}$.

$$
\begin{aligned}
& =0.159 \times 20 \times 10^{-3} \times 750 \times 60 \times\left(\frac{4}{2}\right) \\
T & =286.2 \mathrm{~N}-m
\end{aligned}
$$

(5) A sooN de motor takes an armature current of 60 A when it speed is 800rpm, If the armature resistance is 0.2 calculate the torque developed.

$$
\begin{aligned}
& V=500 \mathrm{~V}, T_{a}=60 \mathrm{~A} \quad \mathrm{~N}=800 \mathrm{Tpm}, \mathrm{R}_{a}=0.2 \mathrm{I} \\
& E_{b}=V T_{\alpha} R_{\alpha}=500-60 * 0.2=488 \mathrm{~V} \\
& \text { Torque developed } T=\frac{E_{b} T_{a}}{2 \pi N / 60}=\frac{488 \times 60}{2 \times \pi \times 800 / 60} \\
& =349.5 \mathrm{~N} .
\end{aligned}
$$

Problems (DC Motors)
(1) A 220VDC shunt motor has an armature resistance, of on if full lon armature current is 25 A and the no load armature current is 3 A . Find the change in back emf from Nolood to Full load:

Sol Re Rated voltage of the motor, $\mathrm{V}=220 \mathrm{~V}$
(1) When motor is on Fulliond,
full Cod armature current Toy? 25 A
Armature resistance, $R_{2}=0.5 \Omega$

$$
\begin{aligned}
\text { Backemf }=V-I_{a} R_{a} & =220-25 \times 0.5 \\
& =207.5 V
\end{aligned}
$$

${ }^{9} \mathrm{abs}$
(2) When motor is on No loo;

No lond a mature current, $\mathbb{T r}_{2}=3 \mathrm{~A}$

$$
\begin{array}{rl}
\text { Back emf } E_{b_{2}} & V-I_{a_{2}} R_{a} \\
=220-3 \times 0.5 \\
& =218.5 V
\end{array}
$$

Hence, change in back EMF from $N L_{\text {, to }} F L$ is $F_{b_{2}} E_{b_{1}}=218.5-20715$ $=\Pi \mathrm{V}_{0}(\mathrm{t}$.
(2) A 230 V DC shunt motor takes 32 A at fullood Find the backemf an Full tod if the resistance of motor armature and shunt field winding are o $2 \Omega \&$ ils respectively.

Solve Supply Voltage $V=230 \mathrm{~V}$

$$
\begin{aligned}
& \text { FL. current }, I_{0}=32 A \\
& \\
& R_{a}=0.2 \Omega \& R_{s h}=115 \Omega
\end{aligned}
$$

Shunt field current $I_{s h}=\frac{V}{R_{s h}}=\frac{230}{115}=2 \mathrm{~A}$
Armature current, $I_{a}=T-I_{S h}=32-2=30 \mathrm{~A}$

$$
\text { Back EMF, } \begin{aligned}
E_{b} & =V-I_{a} R_{a} \\
& =230-30 \times 0.2 \\
& =224 \mathrm{~V} \text { on } F . \mathrm{L}
\end{aligned}
$$

Unit 5 TRANSFORMERS

A transformer is a device that transfers electrical energy from one circuit to another through inductively coupled conductors-the transformer's coils. A varying current in the first or primary winding creates a varying magnetic flux in the transformer's core and thus a varying magnetic field through the secondary winding. This varying magnetic field induces a varying electromotive force (EMF), or "voltage", in the secondary winding. This effect is called inductive coupling.

Discovery

Faraday's experiment with induction between coils of wire

The phenomenon of electromagnetic induction was discovered independently by Michael Faraday and Joseph Henry in 1831. However, Faraday was the first to publish the results of his experiments and thus receive credit for the discovery. The relationship between electromotive force (EMF) or "voltage" and magnetic flux was formalized in an equation now referred to as "Faraday's law of induction":

$$
|\mathcal{E}|=\left|\frac{d \Phi_{B}}{d t}\right|
$$

 magnetic flux through the circuit in webers.

Faraday performed the first experiments on induction between coils of wire, including winding a pair of coils around an iron ring, thus creating the first toroidal closed-core transformer.

WORKING PRINCIPLE OF TRANSFORMER:

Introduction

The main advantage of alternating currents over direct current is that, the alternating currents can be easily transferable from low voltage to high voltage or high voltage to low. Alternating voltages can be raised or lowered as per requirements in the different stages of electrical network as generation, transmission, distribution and utilization. This is possible with a static device called transformer. The transformer works on the principle of mutual induction. It transfer an electric energy from one circuit to other when there is no
 electrical connection between the tow circuits. Thus we can define transformer as below :

Key point : The transformer is a static piece of apparatus by means of which an electrical power is transformed from one alternating current circuit to another with the desired change in voltage and current, without any change in the frequency.

The use of transformers in transmission system is shown in the Fig 1.1.

Fig. 1.1 Use of transformer in transmission system

PRINCIPLE OF WORKING

The principle of mutual induction states that when tow coils are inductively coupled and if current in one coil is changed uniformly then an e.m.f. gets induced in the other coil. This e.m.f can drive a current, when a closed path is provided to it. The transformer works on the same principle. In its elementary form, it consists of tow inductive coils which are electrically separated but linked through a common magnetic circuit. The two coils have high mutual inductance. The basic transformer is shown in the Fig 1.2.

One of the two coils is connected to source of alternating voltage. This coil in which electrical energy is fed with the help of source called primary winding (P). The other winding is connected to load. The electrical energy transformed to this winding is drawn out to the load.

Fig.1.2 Basic transformer

Fig 1.3 Symbolic representation
This winding is called secondary winding (S). The primary winding has N_{1} number of turns while the secondary winding has N_{2} number of turns. Symbolically the transformer is indicated as shown in the Fig 1.3.

When primary winding is excited by an alternating voltage, it circulates an alternating current. This current produces an alternating flux (Φ)which completes its path through common magnetic core as shown dotted in the Fig 1.2. Thus an alternating, flux links with the secondary winding. As the flux is alternating, according to Faraday's law of an electromagnetic induction, mutually induced e.m.f. gets developed in the secondary winding. If now load is connected to the secondary winding, this e.m.f. drives a current through it.

Thus through there is no electrical contact between the two windings, an electrical energy gets transferred from primary to the secondary.

Key point : The frequency of the mutual induced e.m.f. is same as that of the alternating source which is supplying energy to the primary winding.

Can D.C. Supply be used for Transformer?

The d.c. supply can not be used for the transformers.
The transformer works on the principle of mutual induction, for which current in one coil must change uniformly. If d.c. supply is given, the current will not change due to constant supply and transformer will not work.

Practically winding resistance is very small. For d.c., the inductive reactance X_{L} is zero as d.c. has no frequency. So total impedance of winding is very low for d.c. Thus winding will draw very high current if d.c. supply is given to it. This may cause the burning of windings due to extra heat generated and may cause permanent damage to the transformer.

There can be saturation of the core due to which transformer draws very large current from the supply when connected to d.c.

Thus d.c. supply should not be connected to the transformers.

CONSTRUCTION OF TRANSFORMER:

There are two basic parts of a transformer i) Magnetic Core ii) Winding or Coils.
The core of the transformer is either square or rectangular in size. It is further divided into tow parts. The vertical position on which coils are wound is called limb while the top and bottom horizontal portion is called yoke of the core. These parts are shown in the Fig.1(a).

Core is made up of lamination. Because of laminated type of construction, eddy current losses get minimised. Generally high grade silicon steel laminations (0.3 to 0.5 mm thick) are used. These laminations are insulated from each other by using insulation like varnish. All laminations are varnished. Laminations are overlapped so that to avoid the air gap at joints. For this generally 'L' shaped or 'I' shaped laminations are used which are shown in the Fig 1(b).

Fig. 1 Construction of transformer

The cross-section of the limb depends on the type of coil to be used either circular or rectangular. The different cross-section of limbs, practically used are shown in the Fig. 2.

Fig. 2 Different cross-sections

Types of Windings

The coils used are wound on the limbs and are insulated from each other. In the basic transformer shown in the Fig 1.2 the two windings wound are shown on two different limbs i.e. primary on one limb while secondary on other limb. But due to this leakage flux increases which effects the transformer performance badly. Similarly it is necessary that the windings should be very closes to each other to have high mutual inductance. To achieve this, the two windings are split into number of coils and are wound adjacent to each other on the same limb. A very common arrangement is cylindrical coils as shown in the Fig. 3.

Fig. 3 Cylindrical concentric coils

Such cylindrical coils are used in the core type transformer. Theses coils are mechanically strong. These are wound in the helical layers. The different layers are insulated from each other by paper, cloth or mica. The low voltage winding is placed near the core from ease of insulating it from the core. The high voltage is placed after it.

The other type of coils which is very commonly used for the shell type of transformer is sandwiching coils. Each high voltage portion lies between the two low voltage portion sandwiching the high voltage portion. Such subdivision of windings into small portion reduces the leakage flux. Higher the degree of subdivision, smaller is the reactance. The sandwich coil is shown in the Fig. 4. The top and bottom coils are low voltage coils. All the portion are insulated from each other by paper.

Fig. 4 Sandwich coils

The various types of depending on the construction of core used for the single phase transformers are,

1. Core type
2. shell type and
3. Berry type

1. Core Type Transformer

It has a single magnetic circuit. The core rectangular having two limbs. The winding encircles the core. The coils used are of cylindrical type. As mentioned earlier, the coils are wound in helical layers with different layers insulated from each other by paper or mica. Both the coils are placed on both the limbs. The low voltage coil is placed inside near the core while high voltage coil surrounds the low voltage coil. Core is made up of large number of thin laminations.

As The windings are uniformly distributed over the two limbs, the natural cooling is more effective. The coils can be easily removed by removing the laminations of the top yoke, for maintenance.

The Fig. 1(a) shows the schematic representation of the core type transformer while the Fig 1(b) shows the view of actual construction of the core type transformer.

Fig. 1 Core type transformer

2. Shell Type Transformer

It has a double magnetic circuit. The core has three limbs. Both the windings are placed on the central limb. The core encircles most part of the windings. The coils used are generally multilayer disc type or sandwich coils. As mentioned earlier, each high voltage coil is in between tow low voltage coils and low voltage coils are nearest to top and bottom of the yokes.

The core is laminated. While arranging the laminations of the core, the care is taken that all the joints at alternate layers are staggered. This is done to avoid narrow air gap at the joint, right through the cross-section of the core. Such joints are called over lapped or imbricated joint. Generally for very high voltage transformers, the shell type construction is preferred. As the windings are surrounded by the core, the natural cooling does not exist. For removing any winding for maintenance, large number of laimnations are required to be removed.

The Fig. 2(a) shows the schematic representation while the Fig. 2(b) shows the outaway view of the construction of the shell type transformer.

Fig 2 Shell type transformer

3. Berry Type Transformer

This has distributed magnetic circuit. The number of independent magnetic circuits are more than 2. Its core construction is like spokes of a wheel. Otherwise it is symmetrical to that of shell type.

Diagramatically it can be shown as in the Fug. 3.

Fig. 3 Berry type transformer
The transformers are generally kept in tightly fitted sheet metal tanks. The tanks are constructed of specified high quality steel plate cut, formed and welded into the rigid structures. All the joints are painted with a solution of light blue chalk which turns dark in the presence of oil, disclosing even the minutes leaks. The tanks are filled with the special insulating oil. The entire transformer assembly is immersed in the oil. Oil serves two functions : i) Keeps the coil cool by circulation and ii) Provides the transformers an additional insulation.

The oil should be absolutely free from alkalies, sulphur and specially from moisture. Presence of very small moisture lowers the dielectric strength of oil, affecting its performance badly. Hence the tanks are sealed air tight to avoid the contact of oil with atmospheric air and moisture. In large transformers, the chambers called breather are provided. The breathers prevent the atmospheric moisture to pass on to the oil. The breathers contain the silica gel crystal which immediately absorb the atmospheric moisture. Due to long and continuous use, the sludge is formed in the oil which can contaminate the oil. Hence to keep such sludge separate from the oil in main tank, an air tight metal drum is provided, which is placed on the top of tank. This is called conservator.

Comparison of Core and Shell Type Transformers

Sr. No.	Core Type	Shell Type
1.	The winding encircles the core.	The core encircles most part of the windings.
2.	The cylindrical type of coils are used.	Generally, multiayer disc type or sandwich coils are used.
3.	As windings are distributed, the natural cooling is more effective.	As windings are surrounded by the core, the natural cooling does not exist.
4.	The coils can be easily removed from maintenance point of view.	For removing any winding for the maintenance, targe number of laminations are required to be removed. This is difficult.
5.	The construction is preferred for low voitage transformers.	The construction is used for very high voltage transformers.
6.	it has a single magnetic circuit.	It has a double magnetic circuit.
7.	In a single phase type, the core has two limbs.	In a single phase type, the core has three limbs.

E.M.F EQUATION OF TRANSFORMER:

When the primary winding is excited by an alternating voltage V_{1}, it circulates alternating current, producing an alternating flux Φ. The primary winding has N_{1} number of turns. The alternating flux Φ linking with the primary winding itself induces an e.m.f in it denoted as E_{1}. The flux links with secondary winding through the common magnetic core. It produces induced e.m.f. E_{2} in the secondary winding. This is mutually induced e.m.f. Let us derive the equations for E_{1} and E_{2}.

The primary winding is excited by purely sinusoidal alternating voltage. Hence the flux produced is also sinusoidal in nature having maximum value of Φ_{m} as show in the Fig. 1.

Fig. 1 Sinusoidal flux
The various quantities which affect the magnitude of the induced e.m.f. are :

$$
\Phi=\text { Flux }
$$

$\Phi_{m}=$ Maximum value of flux
$\mathrm{N}_{1}=$ Number of primary winding turns
$\mathrm{N}_{2}=$ Number of secondary winding turns
$f=$ Frequency of the supply voltage
$E_{1}=$ R.M.S. value of the primary induced e.m.f.
$E_{2}=$ R.M.S. value of the secondary induced e.m.f.

From Faraday's law of electromagnetic induction the voltage e.m.f. induced in each turn is proportional to the average rate of change of flux
$\therefore \quad$ average e.m.f. per turn $=$ average rate of change of flux
$\therefore \quad$ average e.m.f. per turn $=\mathrm{d} \Phi / \mathrm{dt}$

Now $\quad d \Phi / d t=$ Change in flux/Time required for change in flux
Consider the $1 / 4$ th cycle of the flux as shown in the Fig.1. Complete cycle gets completed in $1 / \mathrm{f}$ seconds. In $1 / 4$ th time period, the change in flux is from 0 to Φ_{m}.
$\therefore \quad d \Phi / d t=\left(\Phi_{m}-0\right) /(1 / 4 f) \quad$ as $d t$ for $1 / 4$ th time period is $1 / 4 f$ seconds

$$
=4 f \Phi_{\mathrm{m}} \quad \mathrm{~Wb} / \mathrm{sec}
$$

$\therefore \quad$ Average e.m.f. per turn $=4 \mathrm{f} \Phi_{\mathrm{m}}$ volts
As is sinusoidal, the induced e.m.f. in each turn of both the windings is also sinusoidal in nature. For sinusoidal quantity,

From factor $=$ R.M.S. value/Average value $=1.11$
$\therefore \quad$ R.M.S. value of induced e.m.f. per turn

$$
=1.11 \times 4 \mathrm{f} \Phi_{\mathrm{m}}=4.44 \mathrm{f} \Phi_{\mathrm{m}}
$$

There are number of primary turns hence the R.M.S value of induced e.m.f. of primary denoted as is E_{1},

$$
\mathrm{E}_{1}=\mathrm{N}_{1} \times 4.44 \mathrm{f} \Phi_{\mathrm{m}} \text { volts }
$$

While as there are number of secondary turns the R.M.S values of induced e.m.f. of secondary denoted is E_{2} is,

$$
E_{2}=N_{2} \times 4.44 f \Phi_{m} \quad \text { volts }
$$

The expression of E_{1} and E_{2} are called e.m.f. equation of a transformer.

Thus e.m.f. equations are,

$$
\begin{array}{ll}
\mathrm{E}_{1}=4.44 \mathrm{f} \Phi_{\mathrm{m}} \mathrm{~N}_{1} & \text { volts } \\
\mathrm{E}_{2}=4.44 \mathrm{f} \Phi_{\mathrm{m}} \mathrm{~N}_{2} & \text { volts }
\end{array}
$$

Transformation Ratio(k)

Consider a transformer shown in Fig. 1 indicating various voltages and currents.

Fig. 1 Ratios of transformer

1. Voltage Ratio

We known from the e.m.f. equations of a transformer that

$$
E_{1}=4.44 f \Phi_{m} N_{1} \text { and } \quad E_{2}=4.44 f \Phi_{m} N_{2}
$$

Taking ratio of the two equations we get,

$$
\frac{E_{2}}{E_{1}}=\frac{N_{2}}{N_{1}}=K
$$

This ratio of secondary induced e.m.f. to primary induced e.m.f. is known as voltage transformation ratio denoted as K,

Thus,

$$
E_{2}=K E_{1} \quad \text { where } \quad K=\frac{N_{2}}{N_{1}}
$$

1. If $N_{2}>N_{1}$ i.e. $K>1, E_{2}>E_{1}$ we get then the transformer is called step-up transformer.
2. If $N_{2}<N_{1}$ i.e. $K<1$, we get $E_{2}<E_{1}$ then the transformer is called step-down transformer.
3. If $=$ i.e. $K=1$, we get $E_{2}=E_{1}$ then the transformer is called isolation transformer or 1:1 transformer.

2. Concept of Ideal Transformer

A transformer is said to be ideal if it satisfies following properties:
i) It has no losses.
ii) Its windings have zero resistance.
iii) Leakage flux is zero i.e. 100% flux produced by primary links with the secondary.
iv) Permeability of core is so high that negligible current is required to establish the flux in it.

Key point : For an ideal transformer, the primary applied voltage V_{1} is same as the primary induced e.m.f. V_{2} as there are no voltage drops.

Similarly the secondary induced e.m.f. E_{2} is also same as the terminal voltage V_{2} across the load. Hence for an ideal transformer we can write,

$$
\frac{E_{2}}{E_{1}}=\frac{V_{2}}{V_{1}}=K
$$

No transformer is ideal in practice but the value of E_{1} is almost equal to V_{1} for properly designed transformer.

3. Current ratio

For an ideal transformer there are no losses. Hence the product of primary voltage V_{1} and primary current I_{1}, is same as the product of secondary voltage V_{2} and the secondary current I_{2}.

So

$$
V_{1} I_{1}=\text { input } V A \quad \text { and } \quad V_{2} I_{2}=\text { output } V A
$$

For an ideal transformer,

$$
V_{1} I_{1}=V_{2} I_{2}
$$

$$
\frac{V_{2}}{V_{1}}=\frac{I_{1}}{I_{2}}=\mathrm{K}
$$

Key point : Hence the currents are in the inverse ratio of the voltage transformation ratio.

4. Voltage ampere rating

When electrical power is transferred from primary winding to secondary there are few power losses in between. These power losses appear in the form of heat which increase the temperature of the device. Now this temperature must be maintained below certain limiting values as it is always harmful from insulation point of view. As current is the main cause in producing heat, the output maximum rating is generally specified as the product of output voltage and output current i.e. $V_{2} I_{2}$. This always indicates that when transformer is operated under this specified rating, its temperature rise will not be excessive. The copper loss ($I^{2} R$) in the transformer depends on the current 'I' through the winding while the iron or core loss depends on the voltage ' V ' as frequency of operation is constant. None of these losses depend on the power factor $(\cos \Phi)$ of the load. Hence losses decide the temperature and hence the rating of the transformer. As losses depend on V and I only, the rating of the transformer is specified as a product of these two parameters VxI.

Key point : Thus the transformer rating is specified as the product of voltage and current called VA rating.

On both sides, primary and secondary VA rating remains same. This rating is generally expresses in KVA (kilo volt amperes rating).
$\begin{array}{ll}\text { Now } & \mathrm{V}_{1} / \mathrm{V}_{2}=\mathrm{I}_{2} / \mathrm{I}_{1}=\mathrm{K} \\ \therefore & \mathrm{V}_{1} \mathrm{I}_{1}=\mathrm{V}_{2} \mathrm{I}_{2}\end{array}$
$\therefore \quad \mathrm{V}_{1} \mathrm{I}_{1}=\mathrm{V}_{2} \mathrm{I}_{2}$
$\begin{aligned} & \text { kVA rating of } a \\ & \text { transformer }\end{aligned}=\frac{V_{1} I_{1}}{1000}=\frac{V_{2} I_{2}}{1000}$

If V_{1} and V_{2} are the terminal voltages of primary and secondary then from specified KVA rating we can decide full load currents of primary and secondary, I_{1} and I_{2}. This is the safe maximum current limit which may carry, keeping temperature rise below its limiting value.

$$
\begin{aligned}
& I_{1} \text { full load }=\frac{k V A \text { rating } \times 1000}{V_{1}} \\
& I_{2} \text { full load }=\frac{k V A \text { rating } \times 1000}{V_{2}}
\end{aligned}
$$

$$
\ldots(1000 \text { to convert kVA to VA })
$$

Key point : The full load primary and secondary currents indicate the safe maximum values of currents which transformer windings can carry.

Example 1 : A single phase, 50 Hz transformer has 80 turns on the primary winding and 400 turns on the secondary winding. The net cross-sectional area of the core is $200 \mathrm{~cm}^{2}$. If the primary winding is connected at a $240 \mathrm{~V}, 50 \mathrm{~Hz}$ supply, determine :
i) The e.m.f. induced in the secondary winding.
ii) The maximum value of the flux density in the core.

Solution

Example 2 : For a single phase transformer having primary and secondary turns of 440 and 880 respectively, determine the transformer KVA rating if half load secondary current is 7.5 A and maximum value of core flux is 2.25 Wb .

Solution

Example 3 : A single phase transformer has 350 primary and 1050 secondary turns. The primary is connected to $400 \mathrm{~V}, 50 \mathrm{~Hz}$ a.c. supply. If the net cross-sectional area of the core is $50 \mathrm{~cm}^{2}$, calculate i) The maximum value of the flux density in the core ii) The induced e.m.f. in the secondary winding.

$$
\begin{aligned}
& \mathrm{N}_{1}=440, \quad \mathrm{~N}_{2}=880, \quad\left(\mathrm{I}_{2}\right)_{\text {H.L. }}=7.5 \mathrm{~A} \text {, } \\
& \mathrm{f}_{\mathrm{m}}=2.25 \mathrm{mWb}, \quad \mathrm{E}_{2}=4.44 \Phi_{\mathrm{m}} \mathrm{f} \mathrm{~N}_{2} \\
& \text { Assuming } \quad f=50 \mathrm{~Hz} \text {, } \\
& \therefore \quad E_{2}=4.44 \times 2.25 \times 10^{-3} \times 50 \times 880=439.56 \mathrm{~V} \\
& \left(I_{2}\right)_{\text {F.L. }}=\text { KVA rating } / E_{2} \\
& \text { And } \quad\left(I_{2}\right)_{\text {H.L. }}=0.5\left(I_{2}\right)_{\text {F.L. }} \\
& \therefore \quad\left(\mathrm{I}_{2}\right)_{\text {H.L. }}=0.5 \times\left(\mathrm{KVA} \text { rating } / \mathrm{E}_{2}\right) \\
& \therefore \quad 7.5=0.5 \times \text { (KVA rating / 439.56) } \\
& \therefore \text { KVA rating } \quad=2 \times 7.5 \times 439.56 \times 10^{-3}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{N}_{1}=80, \mathrm{f}=50 \mathrm{~Hz}, \mathrm{~N}_{2}=400, \mathrm{a}=200 \mathrm{~cm}^{2}=200 \times 10^{-4} \mathrm{~cm}^{2} \\
& \mathrm{E}_{1}=240 \\
& \mathrm{~K}=\mathrm{N}_{2} / \mathrm{N}_{1}=400 / 80=5 / 1 \\
& \therefore \quad K=E_{2} / E_{1}=E_{2} / 240=5 / 1 \\
& \mathrm{E}_{2}=5 \times 240=1200 \mathrm{~V} \\
& \text { Now } \quad E_{1}=4.44 f \Phi_{m} N_{1} \\
& 240=4.44 \times 50 \times \Phi_{m} \times 80 \\
& \therefore \quad \Phi_{\mathrm{m}}=240 /(4.44 \times 50 \times 80)=0.01351 \mathrm{~Wb} \\
& \therefore \quad B_{m}=\Phi_{\mathrm{m}} / \mathrm{a}=0.01351 /\left(200 \times 10^{-4}\right)=0.6756 \mathrm{~Wb} / \mathrm{m}^{2}
\end{aligned}
$$

Solution

The given value are,

$$
\begin{array}{ll}
\mathrm{N}_{1}=350 \text { turns, } & \mathrm{N}_{2}=1050 \text { turns } \\
\mathrm{V}_{1}=400 \mathrm{~V}, & \mathrm{~A}=50 \mathrm{~cm}^{2}=50 \times 10^{-4} \mathrm{~m}^{2}
\end{array}
$$

The e.m.f. of the transformer is,

```
\(\mathrm{E}_{1}=4.44 \mathrm{f} \Phi_{\mathrm{m}} \mathrm{N}_{1}\)
\(\mathrm{E}_{1}=4.44 \mathrm{~B}_{\mathrm{m}} \mathrm{Af} \mathrm{N}_{1} \quad\) as \(\Phi_{\mathrm{m}}=\mathrm{B}_{\mathrm{m}} \mathrm{A}\)
Flux density \(\quad B_{m}=E_{1} /\left(4.44\right.\) Af \(\left.N_{1}\right)\)
            \(=400 /\left(4.44 \times 50 \times 10^{-4} \times 50 \times 350\right) \quad\) assume \(E_{1}=V_{1}\)
            \(=1.0296 \mathrm{~Wb} / \mathrm{m}^{2}\)
                \(\mathrm{K}=\mathrm{N}_{2} / \mathrm{N}_{1}=1050 / 350=3\)
And
\[
\mathrm{K}=\mathrm{E}_{2} / \mathrm{E}_{1}=3
\]
\[
\therefore \quad \mathrm{E}_{2}=3 \times \mathrm{E}_{1}=3 \times 400=1200 \mathrm{~V}
\]
```


IDEAL TRANSFORMER ON NO-LOAD:

Consider an ideal transformer on no load as shown in the Fig. 3. The supply voltage is and as it is V_{1} an no load the secondary current $\mathrm{I}_{2}=0$.

The primary draws a current l_{1} which is just necessary to produce flux in the core. As it magnetising the core, it is called magnetising current denoted as I_{m}. As the transformer is ideal, the winding resistance is zero and it is purely inductive in nature. The magnetising current is I_{m} is very small and lags V_{1} by 30° as the winding is purely inductive. This I_{m} produces an alternating flux Φ which is in phase with I_{m}.

Fig. 1 Ideal transformer on no load
The flux links with both the winding producing the induced e.m.f.s E_{1} and E_{2}, in the primary and secondary windings respectively. According to Lenz's law, the induced e.m.f. opposes the cause producing it which is supply voltage V_{1}. Hence E_{1} is in antiphase with V_{1} but equal in magnitude. The induced E_{2} also opposes V_{1} hence in antiphase with V_{1} but its magnitude depends on N_{2}. Thus E_{1} and E_{2} are in phase.

The phasor diagram for the ideal transformer on no load is shown in the Fig. .2.

Fig. 2 Phasor diagram for ideal transformer on no load

It can be seen that flux Φ is reference. I_{m} produces Φ hence in phase with $\Phi . V_{1}$ leads I_{m} by 90° as winding is purely inductive so current has to lag voltage by 90°.
E_{1} and E_{2} are in phase and both opposing supply voltage .
The power input to the transformer is $V_{1} I_{1} \cos \left(V_{1} \wedge I_{1}\right)$ i.e. $V_{1} I_{m} \cos \left(90^{\circ}\right)$ i.e. zero. This is because on no load output power is zero and for ideal transformer there are no losses hence input power is also zero. Ideal no load p.f. of transformer is zero lagging.

PRACTICAL TRANSFORMER ON NO-LOAD:

Actually in practical transformer iron core causes hysteresis and eddy current losses as it is subjected to alternating flux. While designing the transformer the efforts are made to keep these losses minimum by,

1. Using high grade material as silicon steel to reduce hysteresis loss.
2. Manufacturing core in the form of laminations or stacks of thin lamination to reduce eddy current loss.

Apart from this there are iron losses in the practical transformer. Practically primary winding has certain resistance hence there are small primary copper loss present.

Thus the primary current under no load condition has to supply the iron losses i.e. hysteresis loss and eddy current loss and a small amount of primary copper loss. This current is denoted as I_{0}.

Now the no load input current I_{0} has two components :

1. A purely reactive component I_{m} called magnetising component of no load current required to produce the flux. This is also called wattless component.
2. An active component I_{c} which supplies total losses under no load condition called power component of no load current. This also called wattful component or core loss component of lo.
Th total no load current I_{o} is the vector addition of I_{m} and I_{c}.

$$
\begin{equation*}
\overline{\mathrm{I}}_{0}=\overline{\mathrm{I}}_{\mathrm{m}}+\overline{\mathrm{I}}_{\mathrm{c}} \tag{1}
\end{equation*}
$$

In practical transformer, due to winding resistance, no load current I_{0} is no longer at 90° with respect to V_{1}. But it lags V_{1} by angle Φ_{0} which is less than 90°. Thus $\cos \Phi_{0}$ is called no load power factor of practical transformer.

Fig 1. Practical transformer on no load

The phasor diagram is shown in the Fig. 1. It can be seen that the two components I_{0} are,

$$
\begin{equation*}
\mathrm{I}_{\mathrm{m}}=\mathrm{I}_{\mathrm{o}} \sin \phi_{0} \tag{2}
\end{equation*}
$$

This is magnetising component lagging V_{1} exactly by 90°.

$$
\begin{equation*}
\mathrm{I}_{\mathrm{c}}=\mathrm{I}_{\mathrm{o}} \cos \phi_{0} \tag{3}
\end{equation*}
$$

This is core loss component which is in phase with V_{1}.
The magnitude of the no load current is given by,

$$
\begin{equation*}
\mathrm{I}_{\mathrm{o}}=\sqrt{\mathrm{I}_{\mathrm{m}}^{2}+\mathrm{I}_{c}^{2}} \tag{4}
\end{equation*}
$$

While $\Phi_{0}=$ no load primary power factor angle
The total power input on no load is denoted as W_{0} and is given by,

$$
\begin{equation*}
W_{o}=V_{1} I_{o} \cos \phi_{o}=V_{1} I_{c} \tag{5}
\end{equation*}
$$

It may be denoted that the current is very small, about 3 to 5% of the full load rated current. Hence the primary copper loss is negligibly small hence I_{c} is called core loss or iron loss component. Hence power input W_{0} on no load always represent the iron losses, as copper loss is negligibly small. The iron losses are denoted as P_{i} and are constant for all load conditions.

$$
\begin{equation*}
\therefore \quad W_{0}=V_{1} I_{0} \cos \phi_{0}=P_{i}=\text { iron loss } \tag{6}
\end{equation*}
$$

Example 1 : The no load current of a transformer is 10 A at a power factor 0 Of 0.25 lagging, when connected to $400 \mathrm{~V}, 50 \mathrm{~Hz}$ supply. Calculate,
a) Magnetising component of the no load current
b) Iron loss and c) Maximum value of flux in the core.

Assume primary winding turns as 500.
Solution : The given value are, $=10 \mathrm{~A}, \cos =0.25,=400 \mathrm{~V}$ and $\mathrm{f}=50 \mathrm{~Hz}$
a)
$I_{m}=I_{o} \sin \Phi_{0}=$ magnetising component
$\Phi_{0}=\cos ^{-1}(0.25)=75.522^{\circ}$
$\therefore \quad \mathrm{I}_{\mathrm{m}}=10 \times \sin \left(75.522^{\circ}\right)=9.6824 \mathrm{~A}$
b) $\quad P_{i}=$ iron loss $=$ power input on no load
$=\mathrm{W}_{0}=\mathrm{V}_{1} \mathrm{I}_{0} \cos \Phi_{0}=400 \times 10 \times 0.25$
$=1000 \mathrm{~W}$
c) On no load, $E_{1}=V_{1}=400 \mathrm{~V}$ and $\mathrm{N}_{1}=500$

Now $\quad E_{1}=4.44 \mathrm{f} \Phi_{m} \mathrm{~N}_{1}$
$\therefore \quad 400=4.44 \times 50 \times \Phi_{\mathrm{m}} \times 500$
$\therefore \quad \Phi_{\mathrm{m}}=3.6036 \mathrm{mWb}$

TRANSFORMER ON LOAD (M.M.F Balancing on Load)

When the transformer is loaded, the current I_{2} flows through the secondary winding. The magnetic and phase of I_{2} is determined by the load. If load is inductive, I_{2} lags V_{2}. If load is capacitive, I_{2} leads V_{2} while for resistive load, I_{2} is in phase with V_{2}.

There exists a secondary m.m.f. $\mathrm{N}_{2} \mathrm{I}_{2}$ due to which secondary current sets up its own flux Φ_{2}. This flux opposes the main flux Φ which is produced in the core due to magnetising component of no load current. Hence the m.m.f. is $\mathrm{N}_{2} \mathrm{I}_{2}$ called demagnetising ampere-turns. This is shown in the Fig.1(a).

The flux Φ_{2} momentarily reduces the main flux Φ, due to which the primary induced e.m.f. also E_{1} reduces.

Hence the vector difference $\overline{\mathbf{V}}-\overline{\mathrm{E}}$ increases due to which primary draws more current from supply

This additional current drawn by primary is due to the load hence called load component of primary current denoted as I_{2} ' as shown in the Fig.1(b).

Fig. 1 Transformer on load
This current $\mathrm{I}_{2}{ }^{\prime}$ is in antiphase with I_{2}. The current sets up its own flux $\Phi_{2}{ }^{\prime}$ which opposes the flux Φ_{2} and helps the main flux Φ. This flux Φ_{2} ' neutralises the flux Φ_{2} produced by I_{2}. The m.m.f. i.e. ampere turns $\mathrm{N}_{2} \mathrm{I}_{2}{ }^{\prime}$ balances the ampere turns $\mathrm{N}_{2} \mathrm{I}_{2}$. Hence the net flux in the core is again maintained at constant level.

Key point : Thus for any load condition, no load to full load the flux in the core is practically constant.
The load component current I_{2} ' always neutralises the changes in the loads. Hence the transformer is called constant flux machine.

As the ampere turns are balanced we can write,

$$
\begin{array}{ll}
& \mathrm{N}_{2} \mathrm{I}_{2}=\mathrm{N}_{2} \mathrm{I}_{2}^{\prime} \\
\therefore & \mathrm{I}_{2}^{\prime}=\left(\mathrm{N}_{2} / \mathrm{N}_{1}\right)=\mathrm{KI}_{2} \tag{1}
\end{array}
$$

Thus when transformer is loaded, the primary current l_{1} has two components :

1. The no load current I_{o} which lags V_{1} by angle Φ_{0}. It has two components I_{m} and I_{c}.
2. The load component I_{2} ' which in antiphase with I_{2}. And phase of I_{2} is decided by the load.

Hence primary current I_{1} is vector sum of I_{0} and $I_{2}{ }^{\prime}$.
$\therefore \quad \bar{I}_{1}=\bar{I}_{0}+\bar{I}_{2}$

Assume inductive load, I_{2} lags E_{2} by Φ_{2}, the phasor diagram is shown in the Fig. 2(a).

Assume purely resistive load, I_{2} in phase with E_{2}, the phasor diagram is shown in the Fig.2(b).

Assume capacitive load, I_{2} leads E_{2} by Φ_{2}, the phasor diagram is shown in the Fig. 2(c).

Note that $\mathrm{I}_{2}{ }^{\prime}$ is always in antiphase with I_{2}.

(a) Inductive load

(b) Resistive load

(c) Capacitive load

Fig. 2

Actually the phase of I_{2} is with respect to V_{2} i.e. angle Φ_{2} is angle between I_{2} and V_{2}. For the ideal case, E_{2} is assumed equal to V_{2} neglecting various drops.

The current ratio can be verified from this discussion. As the no load current I_{0} is very small, neglecting I_{0} we can write,

$$
I_{1} \sim I_{2}^{\prime}
$$

Balancing the ampere turns,

$$
\begin{array}{ll}
& \mathrm{N}_{1} \mathrm{I}_{1}=\mathrm{N}_{1} \mathrm{I}_{1}=\mathrm{N}_{2} \mathrm{I}_{2} \\
\therefore & \mathrm{~N}_{2} / \mathrm{N}_{1}=\mathrm{I}_{1} / \mathrm{I}_{2}=\mathrm{K}
\end{array}
$$

Under full load conditions when I_{0} is very small compared to full load currents, the ratio of primary and secondary current is constant.

Example : A 400/200 V transformer takes 1 A at a power factor of 0.4 on no load. If the secondary supplies a load current of 50 A at 0.8 lagging power factor, calculate the primary current.

Solution : The given values are

$$
\begin{aligned}
& \mathrm{I}_{0}=1 \mathrm{~A}, \cos \Phi_{0}=0.4, \mathrm{I}_{2}=50 \mathrm{~A} \text { and } \cos \Phi_{2}=.08 \\
& \mathrm{~K}=\mathrm{E}_{2} / \mathrm{E}_{1}=200 / 400=0.5 \\
\therefore \quad & \mathrm{I}_{2}^{\prime}=\mathrm{K} \mathrm{I}_{2}=0.5 \times 50=25 \mathrm{~A}
\end{aligned}
$$

The angle of $I_{2}{ }^{\prime}$ is to be decided from $\cos \Phi_{2}=0.8$
Now $\cos \Phi_{2}=0.8$
$\therefore \quad \Phi_{2}=36.86^{\circ}$
$\mathrm{I}_{2}{ }^{\prime}$ is antiphase with I_{2} which lags E_{2} by 36.86°
Consider the phasor diagram shown in the Fig. 3. The flux Φ is the reference.

Fig. 3

Fig. 3 (a)

Now $\quad \cos \Phi_{0}=0.4$

$$
\therefore \quad \Phi_{0}=66.42^{\circ}
$$

$$
\bar{I}_{1}=\bar{I}_{2}{ }^{\prime}+\bar{I}_{0}
$$

............ vector sum
Resolve I_{0} and I_{2}^{\prime} into two components, along reference Φ and in quadrature with Φ in phase with V_{1}.
x component of $I_{0}=I_{0} \sin \Phi_{0}=0.9165 \mathrm{~A}$
y component $\mathrm{I}_{\mathrm{o}}=\mathrm{I}_{\mathrm{o}} \cos \Phi_{\mathrm{o}}=0.4 \mathrm{~A}$
$\therefore \quad \bar{T}_{0}=0.9165+\mathrm{j} 0.4 \mathrm{~A}$
x component of $I_{2}{ }^{\prime}=I_{2}{ }^{\prime} \sin \Phi_{2}=25 \sin \left(36.86^{\circ}\right)=15 \mathrm{~A}$
y component of $\mathrm{I}_{2}{ }^{\prime}=\mathrm{I}_{2}{ }^{\prime} \cos \Phi_{2}=25 \times 0.8=20 \mathrm{~A}$
$\therefore \quad \mathrm{I}_{2}{ }^{\prime}=15+\mathrm{j} 20 \mathrm{~A}$
$\overline{\mathrm{I}}_{1}=0.9165+\mathrm{j} 0.4+15+\mathrm{j} 20=15.9165+\mathrm{j} 20.4 \mathrm{~A}$
Thus the two components of I_{1} are as shown in the Fig.3(c).

Fig. 3 (b)

Fig. 3 (c)

$$
\therefore \quad I_{1}=V\left((15.9165)^{2}+(20.4)^{2}\right)=25.874 \mathrm{~A}
$$

This is the primary current magnitude.
While $\tan \Phi_{1}=15.9165 / 20.4$

$$
\therefore \quad \Phi_{1}=37.96^{\circ}
$$

Hence the primary power factor is, $\cos \Phi_{1}=\cos \left(37.96^{\circ}\right)=0.788$ lagging

Key point : Remember that Φ_{1} is angle between V_{1} and I_{1} and as V_{1} is vertical, Φ_{1} is measured with respect to V_{1}. So do not convert rectangular to polar as it gives angle with respect to x-axis and we want it with respect to y-axis.

Effect OF Winding Resistances

A practical transformer windings process some resistances which not only cause the power losses but also the voltage drops. Let us see what is the effect of winding resistance on the performance of the transformer.

Let $\quad R_{1}=$ primary winding resistance in ohms
$\mathrm{R}_{2}=$ secondary winding resistance in ohms
Now when current I_{1} flows through primary, there is voltage drop $I_{1} R_{1}$ across the winding. The supply voltage V_{1} has to supply this drop. Hence primary induced e.m.f. E_{1} is the vector difference between V_{1} and $\mathrm{I}_{1} \mathrm{R}_{1}$.

$$
\begin{equation*}
\therefore \quad \overline{\mathrm{E}}_{1}=\overline{\mathrm{V}}_{1}-\overline{\mathrm{I}}_{1} \bar{R}_{1} \tag{1}
\end{equation*}
$$

Similarly the induced e.m.f. in secondary is E_{2}. When load is connected, current I_{2} flows and there is voltage drop $I_{2} R_{2}$. The e.m.f. E_{2} has to supply this drop. The vector difference between E_{2} and $I_{2} R_{2}$ is available to the load as a terminal voltage.

$$
\begin{equation*}
\therefore \quad \overline{\mathrm{V}}_{2}=\overline{\mathrm{E}_{2}}-\overline{\mathrm{I}_{2} \mathrm{R}_{2}} \tag{2}
\end{equation*}
$$

The drops $I_{1} R_{1}$ and $I_{2} R_{2}$ are purely resistive drops hence are always in phase with the respective currents I_{1} and I_{2}.

Equivalent Resistance

The resistance of the two windings can be transferred to any one side either primary or secondary without affecting the performance of the transformer. The transfer of the resistances on any one side is advantageous as it makes the calculations very easy. Let us see how to transfer the resistances on any one side.

The total copper loss due to both the resistances can be obtained as,

$$
\text { total copper loss }=I_{1}^{2} R_{1}+I_{2}^{2} R_{2}
$$

$$
\begin{align*}
& =I_{1}^{2}\left\{R_{1}+\left(I_{2}^{2} / I_{1}^{2}\right) R_{2}\right\} \\
& =I_{1}^{2}\left\{R_{1}+\left(1 / K^{2}\right) R_{2}\right\} \tag{3}
\end{align*}
$$

Where

$$
I_{2} / I_{1}=1 / K
$$

neglecting no load current.
Now the expression (3) indicates that the total copper loss can be expressed as $I_{1}{ }^{2} R_{1}+I_{1}{ }^{2} \cdot R_{2} / K^{2}$. This means R_{2} / K^{2} is the resistance value of R_{2} shifted to primary side which causes same copper loss with I_{1} as R_{2} causes with. This value of resistance which R_{2} / K^{2} is the value of R_{2} referred to primary is called equivalent resistance of secondary referred to primary. It is denoted as $R_{2}{ }^{\prime}$.

$$
\begin{equation*}
\mathrm{R}_{2}{ }^{\prime}=\mathrm{R}_{2} / \mathrm{K}^{2} \tag{4}
\end{equation*}
$$

Hence the total resistance referred to primary is the addition of R_{1} and $R_{2}{ }^{\prime}$ called equivalent resistance of transformer referred to primary and denoted as $\mathrm{R}_{1 \mathrm{e}}$.

$$
\begin{equation*}
=R_{1}+R_{2}^{\prime}=R_{1}+R_{2} / K^{2} \tag{5}
\end{equation*}
$$

This resistance $R_{1 e}$ causes same copper loss with I_{1} as the total copper loss due to the individual windings.

```
total copper loss = II '}\mp@subsup{}{}{2}\mp@subsup{R}{1e}{}=\mp@subsup{I}{1}{}\mp@subsup{}{}{2}\mp@subsup{R}{1}{}+\mp@subsup{I}{2}{2}\mp@subsup{}{}{2}\mp@subsup{R}{2}{
```

So equivalent resistance simplifies the calculations as we have to calculate parameters on one side only.

Similarly it is possible to refer the equivalent resistance to secondary winding.
total copper loss $=I_{1}{ }^{2} R_{1}+I_{2}{ }^{2} R_{2}$

$$
\begin{align*}
& =I_{2}^{2}\left\{\left(I_{1}^{2} / I_{2}^{2}\right) R_{1}+R_{2}\right\} \\
& =I_{2}^{2}\left(K^{2} R_{1}+R_{2}\right) \tag{7}
\end{align*}
$$

Thus the resistance $K^{2} R_{1}$ is primary resistance referred to secondary denoted as $R_{1}{ }^{\prime}$.

$$
\begin{equation*}
\mathrm{R}_{1}^{\prime}=\mathrm{K}^{2} \mathrm{R}_{1} \tag{8}
\end{equation*}
$$

Hence the total resistance referred to secondary is the addition of R_{2} and $R_{1}{ }^{\prime}$ called equivalent resistance of transformer referred to secondary and denoted as $\mathrm{R}_{2 \mathrm{e}}$.

$$
\begin{equation*}
R_{2 e}=R_{2}+R_{1}^{\prime}=R_{2}+K^{2} R_{1} \tag{9}
\end{equation*}
$$

total copper loss $=I_{2}{ }^{2} R_{2 e}$

The concept of equivalent resistance is shown in the Fig. 1(a), (b) and (c).

Fig. 1 Equivalent resistance

Key Point : When resistance are transferred to primary, the secondary winding becomes zero resistance winding for calculation purpose. The entire copper loss occurs due to $\mathrm{R}_{1 \mathrm{e}}$. Similarly when resistances are referred to secondary, the primary becomes resistanceless for calculation purpose. The entire copper loss occurs due to $\mathrm{R}_{2 \mathrm{e}}$.

Important Note : When a resistance is to be transferred from the primary to secondary, it must be multiplied by K^{2}. When a resistance is to be transferred from the secondary to primary, it must be divided by K^{2}. Remember that K is N_{1} / N_{2}.

The result can be cross-checked by another approach. The high voltage winding is always low current winding and hence the resistance of high voltage side is high. The low voltage side is high current side and hence resistance of low voltage side is low. So while transferring resistance from low voltage side to high voltage side, its value must increase while transferring resistance from high voltage side to low voltage side, its value must decrease.

Key point :

High voltage side \rightarrow Low current side \rightarrow High resistance side

Low voltage side \rightarrow High current side \rightarrow Low resistance side
Example 1 : A 6600/400 V single phase transformer has primary resistance of 2.5Ω and secondary resistance of 0.01Ω calculate total equivalent resistance referred to primary and secondary.

Solution : The given values are,

$$
\begin{aligned}
& R_{1}=2.5 \Omega \quad R_{2}=0.01 \Omega \\
& K=400 / 6600=0.0606
\end{aligned}
$$

While finding equivalent resistance referred to primary, transfer to primary as,

$$
\begin{aligned}
& R_{2}^{\prime}=R_{2} / K^{2}=0.01 /(0.0606)^{2}=2.7225 \Omega \\
& R_{1 e}=R_{1}+R_{2}^{\prime}=2.5+2.7225=5.2225 \Omega
\end{aligned}
$$

It can be observed that primary is high voltage hence high resistance side hence while transferring from low voltage to on high voltage, its value increases.

To find total equivalent resistance referred to secondary, first calculate ,

$$
\begin{aligned}
& R_{1}^{\prime}=K^{2} R_{1}=(0.0606)^{2} \times 25=0.00918 \Omega \\
& R_{2 e}=R_{2}+R_{1}^{\prime}=0.01+0.00918=0.01918 \Omega
\end{aligned}
$$

Effect of Leakage Reactance

Uptill now it is assumed that the entire flux produced by the primary links with the secondary winding. But in practice it is not possible. Part of the primary flux as well as the secondary flux completes the path through air and links with the respecting winding only. Such a flux is called leakage flux. Thus there are two leakage fluxes present as shown in the Fig. 1.

Fig . 1 Individual impedance

The flux $\Phi_{\mathrm{L} 1}$ is the primary leakage flux which is produced due to primary current I_{1}. It is in phase with I_{1} and links with primary only.

The flux $\Phi_{\mathrm{L} 2}$ is the secondary leakage flux which is produced due to current I_{2}. It is in phase with I_{2} and links with the secondary winding only.

Due to the leakage flux $\Phi_{\mathrm{L} 1}$ there is self induced e.m.f. $e_{\mathrm{L} 1}$ in primary. While due to leakage flux $\Phi_{\mathrm{L} 2}$ there is self induced e.m.f. $\mathrm{e}_{\mathrm{L} 2}$ in secondary. The primary voltage V_{1} has to overcome this voltage $e_{L 1}$ to produce E_{1} while induced e.m.f. E_{2} has to overcome $e_{L 2}$ to produce terminal voltage V_{2}. Thus the self induced e.m.f.s are treated as the voltage drops across the fictitious reactance placed in series with the windings. These reactances are called leakage reactance of the winding.

$$
\begin{array}{ll}
\text { So } & \mathrm{X}_{1}=\text { Leakage reacatnce of primary winding. } \\
\text { and } & \mathrm{X}_{2}=\text { Leakage reactance of secondary winding. }
\end{array}
$$

The value of X_{1} is such that the drop $I_{1} X_{1}$ is nothing but the self induced e.m.f. $e_{L 1}$ due to flux $\Phi_{L 1}$. The value of X_{2} is such that the drop $I_{2} X_{2}$ is equal to the self induced e.m.f. e e ${ }_{\mathrm{L} 2}$ due to flux $\Phi_{\mathrm{L} 1}$.

Leakage fluxes with the respective windings only and not to both the windings. To reduce the leakage, as mentioned, int eh construction both the winding's are placed on same limb rather than on separate limbs.

Equivalent Leakage Reactance

Similar to the resistances, the leakage reactances also can be transferred from primary to secondary or viceversa. The relation through K^{2} remains same for the transfer of recatnaces as it is studied earlier for the resistances.

Let X_{1} is leakage reactance of primary and X_{2} is leakage reactance of secondary.
Then the total leakage reacatance referred to primary is $X_{1 e}$ given by,

$$
X_{1 e}=X_{1}+X_{2}^{\prime} \text { where } \quad X_{2}^{\prime}=X_{2} / K^{2}
$$

While the total leakage reacatnce referred to secondary is given by,

And

$$
X_{2 e}=X_{2}+X_{1}^{\prime} \text { where } X_{1}^{\prime}=K^{2} X_{1}
$$

Equivalent Impedance

The transformer primary has resistance R_{1} and reactance X_{1}. While the transformer secondary has resistance R_{2} and reacatnce X_{2}. Thus we can say that the total impedance of primary winding is Z_{1} which is,

$$
\begin{equation*}
\mathrm{Z}_{1}=\mathrm{R}_{1}+\mathrm{j} \mathrm{X}_{1} \Omega \tag{1}
\end{equation*}
$$

And the total impedance of the secondary winding is which is,

$$
\begin{equation*}
Z_{2}=R_{2}+j X_{2} \Omega \tag{2}
\end{equation*}
$$

This is shown in the Fig. 1.

Fig. 1 Individual impedance

The individual magnitudes of and are,

$$
\begin{equation*}
Z_{1}=V\left(R_{1}^{2}+X_{1}^{2}\right) \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
Z_{2}=V\left(R_{2}^{2}+X_{2}^{2}\right) \tag{4}
\end{equation*}
$$

Similar to resistance and reactance, the impedance also can be referred to any one side.
Let

$$
\mathrm{Z}_{1 \mathrm{e}}=\text { total equivalent impedance referred to primary }
$$

then

$$
Z_{1 e}=R_{1 e}+j X_{1 e}
$$

$$
\begin{equation*}
Z_{1 e}=Z_{1}+Z_{2}^{\prime}=Z_{1}+Z_{2} / K^{2} \tag{5}
\end{equation*}
$$

Similarly $\quad Z_{2 e}=$ total equivalent impedance referred to secondary
then

$$
\begin{align*}
& Z_{2 e}=R_{2 e}+j X_{2 e} \\
& Z_{2 e}=Z_{2}+Z_{1}^{\prime}=Z_{2}+K^{2} Z_{1} \tag{6}
\end{align*}
$$

The magnitude of $Z_{1 e}$ and $Z_{2 e}$ are,

$$
\begin{equation*}
Z_{1 e}=V\left(R_{1 e}{ }^{2}+X_{1 e}{ }^{2}\right) \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
Z_{2 e}=V\left(R_{2 e}^{2}+X_{2 e}{ }^{2}\right) \tag{8}
\end{equation*}
$$

It can be denoted that,

$$
Z_{2 e}=K^{2} Z_{1 e} \quad \text { and } Z_{1 e}=Z_{2 e} / K^{2}
$$

The concept of equivalent impedance is shown in the Fig. 2.

(a) Referred to primary

$z_{2 e}=R_{2 e}+j X_{2 e}$
(b) Referred to secondary

Fig 2 Equivalent impedance

Example 1 :A $15 \mathrm{KVA}, 2200 / 110 \mathrm{~V}$ transformer has $\mathrm{R}_{1}=1.75 \Omega, \mathrm{R}_{2}=0.0045 \Omega$ the leakage reactance are $X_{1}=2.6 \Omega$ and $X_{2}=0.0075 \Omega$ Calculate,
a) equivalent resistance referred to primary
b) equivalent resistance referred to secondary
c) equivalent reactance referred to primary
d) equivalent reactance referred tosecondary
e) equivalent impedance referred to primary
f) equivalent impedance referred to secondary
g) total copper loss

Solution : The given values are, $\mathrm{R}_{1}=1.75 \Omega, \mathrm{R}_{2}=0.0045 \Omega, \mathrm{X}_{1}=2.6 \Omega, \mathrm{X}_{2}=0.0075 \Omega$

$$
K=110 / 2200=1 / 20=0.05
$$

a) $R_{1 e}=R_{1}+R_{2}{ }^{\prime}=R_{1}+R_{2} / K^{2}=1.75+0.0045 / 0.05^{2}=3.55 \Omega$
b) $R_{2 e}=R_{2}+R_{1}{ }^{\prime}=R_{2}+K^{2} R_{1}=$

$$
=0.0045+(0.05)^{2} \times 1.75=0.00887 \Omega
$$

c) $X_{1 e}=X_{1}+X_{2}{ }^{\prime}=X_{1}+X_{2} / K^{2}=2.6+0.0075 /(0.05)^{2}=5.6 \Omega$
d) $X_{2 e}=X_{2}+X_{1}^{\prime}=X_{2}+K^{2} X_{1}$

$$
=0.0075+(0.05)^{2} \times 2.6=0.014 \Omega
$$

e) $Z_{1 e}=R_{1 e}+j X_{1 e}=3.55+j 5.6 \Omega$
$Z_{1 e}=V\left(3.55^{2}+5.6^{2}\right)=6.6304 \Omega$
f) $Z_{2 e}=R_{2 e}+j X_{2 e}=0.00887+j 0.014 \Omega$
$Z_{2 e}=V\left(0.00887^{2}+0.014^{2}\right)=0.01657 \Omega$
g) To find the load copper loss, calculate full load current.
$\left(I_{1}\right)$ F.L. $=(K V A \times 1000) / V_{1}=(25 \times 1000) / 2200=11.3636 \mathrm{~A}$
total copper loss $=\left(\left(I_{1}\right) \text { F.L. }\right)^{2} R_{1 e}=(11.3636)^{2} \times 355=458.4194 \mathrm{~W}$
This can be checked as,
$\left(I_{2}\right)$ F.L. $=(K V A \times 1000) / V_{2}=(25 \times 1000 / 110=227.272 \mathrm{~A}$
total copper loss $=I_{1}{ }^{2} R_{1}+I_{2}{ }^{2} R_{2}$

$$
\begin{aligned}
& =(11.3636)^{2} \times 1.75+(227.373)^{2} \times 0.0045 \\
& =225.98+232.4365=458.419 \mathrm{~W}
\end{aligned}
$$

Equivalent circuit of Transformer

The term equivalent circuit of a machine means the combination of fixed and variable resistances and reactances, which exactly simulates performance and working of the machine.

For a transformer, no load primary current has two components,

$$
\begin{aligned}
& I_{m}=I_{o} \sin \Phi_{o}=\text { Magnetizing component } \\
& I_{c}=I_{o} \cos \Phi_{0}=\text { Active component }
\end{aligned}
$$

I_{m} produces the flux and is assumed to flow through reactance X_{o} called no load reractance while I_{c} is active component representing core losses hence is assumed to flow through the reactance R_{o}. Hence equivalent circuit on no load can be shown as in the Fig. 1. This circuit consisting of R_{o} and X_{o} in parallel is called exciting circuit. From the equivalent circuit we can write,
$\mathrm{R}_{\mathrm{o}}=\mathrm{V}_{1} / \mathrm{I}_{\mathrm{c}}$
and $\mathrm{X}_{\mathrm{o}}=\mathrm{V}_{1} / \mathrm{I}_{\mathrm{m}}$

Fig. 1 No load equivalent circuit

When the is connected to the transformer then secondary current I_{2} flows. This causes voltage drop across R_{2} and R_{2}. Due to I_{2}, primary draws an additional current
$I_{2}{ }^{\prime}=I_{2} / K$. Now I_{1} is the phasor addition of I_{0} and $I_{2}{ }^{\prime}$. This I_{1} causes the voltage drop across primary resistance R_{1} and reactance X_{1}.

Hence the equivalent circuit can be shown as in the Fig. 2.

Fig. 2

But in the equivalent circuit, windings are not shown and it is further simplified by transferring all the values to the primary or secondary. This makes the transformer calculation much easy.

So transferring secondary parameters to primary we get,

$$
R_{2}^{\prime}=R_{2} / K^{2}, \quad X_{2}^{\prime}=X_{2} / K^{2 \prime}, \quad Z_{2}^{\prime}=Z_{2} / K^{2}
$$

While

$$
E_{2}{ }^{\prime}=E_{2} / K^{\prime} \quad I_{2}^{\prime}=K I_{2}
$$

Where

$$
\mathrm{K}=\mathrm{N}_{2} / \mathrm{N}_{1}
$$

While transferring the values remember the rule that
Low voltage winding High current Low impedance
High voltage winding Low current High impedance
Thus the exact equivalent circuit referred to primary can be shown as in the Fig. 3.

Fig. 3 Exact equivalent circuit referred to primary

Similarly all the primary value can be referred to secondary and we can obtain the equivalent circuit referred to secondary.

$$
\begin{aligned}
R_{1}^{\prime} & =K^{2} R_{1}, & X_{1}^{\prime} & =K^{2} X_{1}, \\
E_{1}^{\prime} & =K E_{1}, & \mathrm{I}_{0}^{\prime}=I_{1}=K^{2} Z_{1} & I_{0}^{\prime}=I_{0} / K
\end{aligned}
$$

Similarly the exciting circuit parameters also gets transferred to secondary as $R_{0}{ }^{\prime}$ and $X_{o}{ }^{\prime}$. The circuit is shown in the Fig.4.

Fig. 4 Exact equivalent circuit referred to secondary

Now as long as no load branch i.e. exciting branch is in between Z_{1} and Z_{2} ', the impedances can not be combined. So further simplification of the circuit can be done. Such circuit is called approximate equivalent circuit.

Approximate Equivalent Circuit

To get approximate equivalent circuit, shift the no load branch containing R_{o} and X_{0} to the left of R_{1} and X_{1}. By doing this we are creating an error that the drop across R_{1} and $X_{1} d u e$ to I_{0} is neglected. Hence such an equivalent circuit is called approximate equivalent circuit.

So approximate equivalent circuit referred to primary can be as shown in the Fig. 5.

Fig. 5 Approximate equivalent circuit referred to primary

In this circuit now R_{1} and R_{2} ' can be combined to get equivalent resistance referred to primary $\mathrm{R}_{1 e}$ as discussed earlier. Similarly X_{1} and X_{1} ' can be combined to get $\mathrm{X}_{1 \mathrm{e}}$. And equivalent circuit can be simplified as shown in the Fig. 6.

Fig. 6

We know that, $R_{1 e}=R_{1}+R_{2}{ }^{\prime}=R_{1}+R_{2} / K^{2}$

$$
\begin{aligned}
& X_{1 e}=X_{1}+X_{2}^{\prime}=X_{1}+X_{2} / K^{2} \\
& Z_{1 e}=R_{1 e}+j X_{1 e} \\
& R_{o}=V_{1} / I_{c} \text { and } X_{o}=V_{1} / I_{m} \\
& I_{c}=I_{o} \cos \Phi_{o} \text { and } I m=I_{o} \sin \Phi_{o}
\end{aligned}
$$

In the similar fashion, the approximate equivalent circuit referred to secondary also can be obtained.

Approximate Voltage Drop in Transformer

Consider the equivalent circuit referred to secondary as shown in the Fig. 1.

Fia. 1.33
Fig. 1
From the Fig. 1 we can write,

$$
\begin{array}{ll}
& \overline{\mathrm{E}}_{2}=\overline{\mathrm{I}_{2} \mathrm{R}_{2 e}}+\overline{\mathrm{I}_{2} \mathrm{X}_{2 e}}+\overline{\mathrm{V}}_{2}=\overline{\mathrm{V}}_{2}+\overline{\mathrm{I}}_{2}\left(\mathrm{R}_{2 \mathrm{e}}+\mathrm{j} \mathrm{X}_{2 e}\right) \\
\therefore \quad & \overline{\mathrm{E}}_{2}=\overline{\mathrm{V}}_{2}+\overline{\mathrm{I}}_{2} \overline{\mathrm{Z}}_{2 \mathrm{e}}
\end{array}
$$

As primary parameters are referred to secondary, there are no voltage drops in primary.
When there is no load, $I_{2}=0$ and we get no load terminal voltage V_{20} as E_{2}.
$\therefore \quad \mathrm{V}_{20}=\mathrm{E}_{2}=$ No load terminal voltage
while $\quad V_{2}=$ Terminal voltage on load

Consider the phasor diagram for lagging p.f. load. The current I_{2} lags V_{2} by angle Φ_{2}. Take V_{2} as reference phasor. $I_{2} R_{2 e}$ is in phase with I_{2} while $I_{2} X_{2 e}$ leads I_{2} by 90°. The phasor diagram is shown in the Fig. 2.

Fig. 2

To derive the expression for approximate voltage drop, draw the circle with O as centre and OC as redius, cutting extended $O A$ at M. $A s O A=V_{2}$ and now $O M=E_{2}$, the total voltage drop is $A M=I_{2}$ $Z_{2 e}$.

But approximating this voltage drop is equal to $A N$ instead of $A M$ where N is intersection of perpendicular drawn from C on $A M$. This is because angle is practically very very small and in practice M and N are very close to each other.

Approximate voltage drop = AN
Draw perpendicular from B on $A M$ intersecting it at D and draw parallel to $D N$ from B to the point L shown in the Fig. 2.

```
\therefore AD = AB cos Ф}\mp@subsup{\Phi}{2}{}=\mp@subsup{I}{2}{}\mp@subsup{R}{2e}{}\operatorname{cos}\mp@subsup{\Phi}{2}{
```

and $\quad \mathrm{DN}=\mathrm{BL}=\mathrm{BC} \sin \Phi_{2}=\mathrm{I}_{2} \mathrm{X}_{2 \mathrm{e}} \sin \Phi_{2}$
$\therefore \quad A N=A D+D N=I_{2} R_{2 e} \cos \Phi_{2}+\mathrm{I}_{2} \mathrm{X}_{2 \mathrm{e}} \sin \Phi_{2}$
Assuming $\quad \Phi_{2}=\Phi_{1}=\Phi$
\therefore Approximate voltage drop $=\mathrm{I}_{2} \mathrm{R}_{2 \mathrm{e}} \cos \Phi+\mathrm{I}_{2} \mathrm{X}_{2 \mathrm{e}} \sin \Phi$
If all the parameters are referred to primary then we get,

Approximate voltage drop $=I_{1} R_{1 e} \cos \Phi+I_{1} X_{1 e} \sin \Phi$

If the load has leading p.f. then we get the phasor diagram as shown in the Fig. 3. The I_{2} leads V_{2} by angle Φ_{2}.

Fig. 3

In this case, the expression for approximate voltage drop remains same but the sign of $I_{2} X_{2 e} \sin$ Ф reverses.

Approximate voltage drop $=I_{2} R_{2 e} \cos \Phi-I_{2} X_{2 e} \sin \Phi \quad$....... Using referred to secondary values

$$
=I_{1} R_{1 e} \cos \Phi-I_{1} X_{1 e} \sin \Phi \quad \ldots U s i n g \text { referred to primary values }
$$

It can be noticed that for leading power factor $\mathrm{E}_{2}<\mathrm{V}_{2}$.

For the unity power factor, the phasor diagram is simple and is shown in the Fig. 4. For this case, as $\cos \Phi=1$ and $\sin \Phi=0$, the approximate voltage drop is $I_{2} R_{2 e}$ or $I_{1} R_{1 e}$.

Fig. 4
Thus the general expression for the total approximate voltage drop is,
Approximate voltage drop $=\mathrm{E}_{2}-\mathrm{V}_{2}$

$$
\begin{aligned}
& =I_{2 e} R_{2 e} \cos \Phi \quad I_{2 e} X_{2 e} \sin \Phi \quad \ldots \ldots . . \text { Using referred to secondary values } \\
& =I_{1 e} R_{1 e} \cos \Phi \quad I_{1 e} X_{1 e} \sin \Phi \quad \ldots \ldots . . \text { Using referred to primary values }
\end{aligned}
$$

+ sing for lagging power factor while - sign for leading power factor loads.

VOLTAGE REGULATION OF TRANSFORMER

Because of the voltage drop across the primary and secondary impedances it is observed that the secondary terminal voltage drops from its no load value (E_{2}) to load value $\left(\mathrm{V}_{2}\right)$ as load and load current increases.

This decrease in the secondary terminal voltage expressed as a fraction of the no load secondary terminal voltage is called regulation of a transformer.

The regulation is defined as change in the magnitude of the secondary terminal voltage, when full load i.e. rated load of specified power factor supplied at rated voltage is reduced to no load, with primary voltage maintained constant expressed as the percentage of the rated terminal voltage.

Let $\quad E_{2}=$ Secondary terminal voltage on no load
$\mathrm{V}_{2}=$ Secondary terminal voltage on given load
then mathematically voltage regulation at given load can be expressed as,

$$
\% \text { voltage regulation }=\frac{E_{2}-V_{2}}{V_{2}} \times 100
$$

The ratio $\left(E_{2}-V_{2} / V_{2}\right)$ is called per unit regulation.

The secondary terminal voltage does not depend only on the magnitude of the load current but also on the nature of the power factor of the load. If V_{2} is determined for full load and specified power factor condition the regulation is called full load regulation.

As load current increases, the voltage drops tend to increase V_{2} and drops more and more. In case of lagging power factor $V_{2}<E_{2}$ and we get positive voltage regulation, while for leading power factor $\mathrm{E}_{2}<\mathrm{V}_{2}$ and we get negative voltage regulation.

The voltage drop should be as small as possible hence less the regulation better is the performance of a transformer.

Expression for Voltage Regulation

The voltage regulation is defined as,

$$
\% R=\left(E_{2}-V_{2} N_{2}\right) \times 100=\left(\text { Total voltage drop } / V_{2}\right) \times 100
$$

The expression for the total approximate voltage drop is already derived.
Total voltage drop $=I_{2} R_{2 e} \cos \Phi \pm I_{2} X_{2 e} \sin \Phi$
Hence the regulation can be expressed as,

$$
\% \mathrm{R}=\frac{\mathrm{I}_{2} \mathrm{R}_{2 e} \cos \phi \pm \mathrm{I}_{2} \mathrm{X}_{2 e} \sin \phi}{\mathrm{~V}_{2}} \times 100
$$

'+' sing for lagging power factor while '-' sing for leading power factor loads.
The regulation van be further expressed interms of $I_{1}, V_{1}, R_{1 e}$ and $X_{1 e}$.

$$
\begin{array}{ll}
& \mathrm{V}_{2} / \mathrm{V}_{1}=\mathrm{I}_{1} / \mathrm{I}_{2}=\mathrm{K} \\
\therefore & \mathrm{~V}_{2}=\mathrm{K} V_{1}, \quad \mathrm{I}_{2}=\mathrm{I}_{1} / \mathrm{K} \\
\text { while } & \mathrm{R}_{1 \mathrm{e}}=\mathrm{R}_{2 \mathrm{e}} / \mathrm{K}^{2}, \mathrm{X}_{1 \mathrm{e}}=\mathrm{X}_{2 \mathrm{e}} / \mathrm{K}^{2}
\end{array}
$$

Substituting in the regulation expression we get,

$$
\% \mathrm{R}=\frac{\mathrm{I}_{1} \mathrm{R}_{1 e} \cos \phi \pm \mathrm{I}_{1} \mathrm{X}_{1 e} \sin \phi}{\mathrm{~V}_{1}} \times 100
$$

Zero Voltage Regulation

We have seen that for lagging power factor and unity power factor condition $\mathrm{V}_{2}<\mathrm{E}_{2}$ and we get positive regulation. But as load becomes capacitive, V_{2} starts increasing as load increase. At a certain leading power factor we get $E_{2}=V_{2}$ and the regulation becomes zero. If the load is increased further, E_{2} becomes less than V_{2} and we get negative regulation.
\therefore for zero voltage regulation,

$$
\begin{array}{ll}
& E_{2}=V_{2} \\
\therefore & E_{2}-V_{2}=0 \\
\text { or } & V_{R} \cos \Phi-V_{x} \sin \Phi=0
\end{array}
$$

\qquad -ve sing as leading power factor
where $\mathrm{V}_{\mathrm{R}}=\mathrm{I}_{2} \mathrm{R}_{2 \mathrm{e}} / \mathrm{V}_{2}=\mathrm{I}_{1} \mathrm{R}_{1 \mathrm{e}} / \mathrm{V}_{1} \quad$ and $\mathrm{V}_{\mathrm{x}}=\mathrm{I}_{2} \mathrm{X}_{2 \mathrm{e}} / \mathrm{V}_{2}=\mathrm{I}_{1} \mathrm{X}_{1 \mathrm{e}} / \mathrm{V}_{1}$
$\therefore \quad \mathrm{V}_{\mathrm{R}} \cos \Phi=\mathrm{V}_{\mathrm{x}} \sin \Phi$
$\therefore \quad \tan \Phi=V_{R} / V_{x}$
$\therefore \quad \cos \Phi=\cos \left\{\tan ^{-1}\left(\mathrm{~V}_{\mathrm{R}} / \mathrm{Vx}\right)\right\}$
This is the leading p.f. at which voltage regulation becomes zero while supplying the load.

Constants of a Transformer

From the regulation expression we can define constants of a transformer.

$$
\begin{aligned}
\% R & =\left(\left(I_{2} R_{2 e} \cos \Phi \pm I_{2} X_{2 e} \sin \Phi\right) / E_{2}\right) \times 100 \\
& =\left\{\left(I_{2} R_{2 e} / E_{2}\right) \cos \Phi \pm\left(I_{2} X_{2 e} / E_{2}\right) \sin \Phi\right\} \times 100
\end{aligned}
$$

The ratio ($I_{2} R_{2 e} / E_{2}$) or ($I_{1} R_{1 e} / E_{1}$) is called per unit resistive drop and denoted as V_{R}.
The ratio $\left(I_{2} X_{2 e} / E_{2}\right)$ or $\left(I_{1} X_{1 e} / E_{1}\right)$ is called per unit reactive drop and is denoted as $V x$.
The terms V_{R} and $V x$ are called constants of a transformer because for the rated output $I_{2}, E_{2}, R_{1 e}$, $X_{1 e}, R_{2 e}, X_{2 e}$ are constants. The regulation can be expressed interms of V_{R} and $V x$ as,

$$
\% \mathrm{R}=\left(\mathrm{V}_{\mathrm{R}} \cos \Phi \pm \mathrm{Vx}^{\sin } \Phi\right) \times 100
$$

On load condition, $\mathrm{E}_{2}=\mathrm{V}_{2}$ and $\mathrm{E}_{1}=\mathrm{V}_{1}$
where V_{1} and V_{2} are the given voltage ratings of a transformer. Hence V_{R} and Vx can be expressed as,
$\mathrm{V}_{\mathrm{R}}=\mathrm{I}_{2} \underline{R}_{2 \mathrm{e}} / \mathrm{V}_{2}=\mathrm{I}_{1} \mathrm{R}_{1 \mathrm{e}} / \mathrm{V}_{1}$
and
$\mathrm{Vx}=\mathrm{I}_{2} \underline{R}_{2 \mathrm{e}} / \mathrm{V}_{2}=\mathrm{I}_{1} \underline{X}_{1 \mathrm{e}} / \mathrm{V}_{1}$
where V_{1} and V_{2} are no load primary and secondary voltages,
V_{R} and Vx_{x} can be expressed on percentage basis as,
Percentage resistive drop $=\mathrm{V}_{\mathrm{R}} \times 100$
Percentage reactive drop $=\mathrm{Vx} \mathrm{x} 100$
Key Point : Note that and are also called per unit resistance and reactance respectively. Losses in a Transformer

In a transformer, there exists two types of losses.
i) The core gets subjected to an alternating flux, causing core losses.
ii) The windings carry currents when transformer is loaded, causing copper losses.

1.1 Core or Iron Losses

Due to alternating flux set up in the magnetic core of the transformer, it undergoes a cycle of magnetisation and demagnetisation. Due to hysteresis effect there is loss of energy in this process which is called hysteresis loss.

It is given by, \quad hysteresis loss $=K_{h} B_{m}{ }^{1.67} \mathrm{f} v$ watts
where $\quad K_{h}=$ Hysteresis constant depends on material.
$B_{m}=$ Maximum flux density.
$f=$ Frequency.
$\mathrm{v}=$ Volume of the core.

The induced e.m.f. in the core tries to set up eddy currents in the core and hence responsible for the eddy current losses. The eddy current loss is given by,

Eddy current loss $=K_{e} B_{m}{ }^{2} f^{2} t^{2}$ watts/ unit volume

where

$$
\mathrm{K}_{\mathrm{e}}=\text { Eddy current constant }
$$

$$
t=\text { Thickness of the core }
$$

As seen earlier, the flux in the core is almost constant as supply voltage V_{1} at rated frequency f is always constant. Hence the flux density B_{m} in the core and hence both hysteresis and eddy current losses are constants at all the loads. Hence the core or iron losses are also called constant losses. The iron losses are denoted as P_{i}.

The iron losses are minimized by using high grade core material like silicon steel having very low hysteresis loop by manufacturing the core in the form of laminations.

1.2 Copper Losses

The copper losses are due to the power wasted in the form of $I^{2} R$ loss due to the resistances of the primary and secondary windings. The copper loss depends on the magnitude of the currents flowing through the windings.

```
Total Cu loss \(=I_{1}{ }^{2} R_{1}+I_{2}{ }^{2} R_{2}=I_{1}{ }^{2}\left(R_{1}+R_{2}{ }^{\prime}\right)=I_{2}{ }^{2}\left(R_{2}+R_{1}{ }^{\prime}\right)\)
```

$$
=I_{1}^{2} R_{1 e}=I_{2}^{2} R_{2 e}
$$

The copper looses are denoted as. If the current through the windings is full load current, we get copper losses at full load. If the load on transformer is half then we get copper losses at half load which are less than full load copper losses. Thus copper losses are called variable losses. For transformer VA rating is or. As is constant, we can say that copper losses are proportional to the square of the KVA rating.

So, $\quad P_{c u} \propto I^{2} \propto(K V A)^{2}$
Thus for a transformer,

Total losses = Iron losses + Copper losses

$$
=P_{i}+P_{c u}
$$

Key point : It is seen that the iron losses depend on the supply voltage while the copper losses depend on the current. The losses are not dependent on the phase angle between voltage and
current. Hence the rating of the transformer is expressed as a product of voltage and current and called VA rating of transformer. It is not expressed in watts or kilo watts. Most of the times, rating is expressed in KVA.

Losses: Additional Study:

Transformer losses are divided into losses in the windings, termed copper loss, and those in the magnetic circuit, termed iron loss. Losses in the transformer arise from:
Winding resistance
Current flowing through the windings causes resistive heating of the conductors. At higher frequencies, skin effect and proximity effect create additional winding resistance and losses.

Hysteresis losses

Each time the magnetic field is reversed, a small amount of energy is lost due to hysteresis within the core. For a given core material, the loss is proportional to the frequency, and is a function of the peak flux density to which it is subjected. ${ }^{[42]}$

Eddy currents

Ferromagnetic materials are also good conductors and a core made from such a material also constitutes a single short-circuited turn throughout its entire length. Eddy currents therefore circulate within the core in a plane normal to the flux, and are responsible for resistive heating of the core material. The eddy current loss is a complex function of the square of supply frequency and inverse square of the material thickness. ${ }^{[42]}$ Eddy current losses can be reduced by making the core of a stack of plates electrically insulated from each other, rather than a solid block; all transformers operating at low frequencies use laminated or similar cores.

Magnetostriction

Magnetic flux in a ferromagnetic material, such as the core, causes it to physically expand and contract slightly with each cycle of the magnetic field, an effect known as magnetostriction. This produces the buzzing sound commonly associated with transformers $\frac{[29]}{}$ that can cause losses due to frictional heating. This buzzing is particularly familiar from low-frequency (50 Hz or 60 Hz) mains hum, and high-frequency $(15,734 \mathrm{~Hz}$ (NTSC) or $15,625 \mathrm{~Hz}$ (PAL)) CRT noise.

Mechanical losses

In addition to magnetostriction, the alternating magnetic field causes fluctuating forces between the primary and secondary windings. These incite vibrations within nearby metalwork, adding to the buzzing noise and consuming a small amount of power. ${ }^{[43]}$

Stray losses

Leakage inductance is by itself largely lossless, since energy supplied to its magnetic fields is returned to the supply with the next half-cycle. However, any leakage flux that intercepts
nearby conductive materials such as the transformer's support structure will give rise to eddy currents and be converted to heat. ${ }^{[44]}$ There are also radiative losses due to the oscillating magnetic field but these are usually small.

EFFICIENCY OF A TRANSFORMER

Due to the losses in a transformer, the output power of a transformer is less than the input power supplied.
$\therefore \quad$ Power output = Power input - Total losses
$\therefore \quad$ Power input $=$ Power output + Total losses

$$
=\text { Power output }+P_{i}+P_{c u}
$$

The efficiency of any device is defined as the ratio of the power output to power input. So for a transformer the efficiency can be expresses as,

$$
\begin{aligned}
& \eta=\text { Power output/power input } \\
\therefore & \left.\eta=\text { Power output/(power output }+P_{i}+P_{c u}\right)
\end{aligned}
$$

Now power output $=\mathrm{V}_{2} \mathrm{I}_{2} \cos \Phi$
where

$$
\cos \Phi=\text { Load power factor }
$$

The transformer supplies full load of current I_{2} and with terminal voltage V_{2}.

$$
\begin{array}{ll}
& \mathrm{P}_{\mathrm{cu}}=\text { Copper losses on full load }=\mathrm{I}_{2}{ }^{2} \mathrm{R}_{2 \mathrm{e}} \\
\therefore & \eta=\left(\mathrm{V}_{2} I_{2} \cos \Phi_{2}\right) /\left(\mathrm{V}_{2} I_{2} \cos \Phi_{2}+\mathrm{P}_{\mathrm{i}}+\mathrm{I}_{2}^{2} \mathrm{R}_{2 \mathrm{e}}\right) \\
\text { But } & \mathrm{V}_{2} I_{2}=\text { VA rating of a transformer } \\
\therefore & \eta=(V A \text { rating } x \cos \Phi) /\left(V A \text { rating } x \cos \Phi+\mathrm{P}_{\mathrm{i}}+\mathrm{I}_{2}^{2} \mathrm{R}_{2 \mathrm{e}}\right)
\end{array}
$$

$$
\therefore \quad \% \eta=\frac{\text { (VA rating) } \times \cos \phi}{(\text { VA rating }) \times \cos \phi+P_{i}+I_{2}^{2} R_{2 e}} \times 100
$$

This is full load percentage efficiency with,

$$
I_{2}=\text { Full load secondary current }
$$

But if the transformer is subjected to fractional load then using the appropriate values of various quantities, the efficiency can be obtained.

Let $\mathrm{n}=$ Fraction by which load is less than full load = Actual load/Full load
For example, if transformer is subjected to half load then,
$n=$ Half load/Full load $=(1 / 2) / 2=0.5$
when load changes, the load current changes by same proportion.
$\therefore \quad$ new $I_{2}=n\left(I_{2}\right)$ F.L.

Similarly the output $V_{2} I_{2} \cos \Phi_{2}$ also reduces by the same fraction. Thus fraction of VA rating is available at the output.

Similarly as copper losses are proportional to square of current then, new $P_{c u}=n^{2}\left(P_{c u}\right)$ F.L.
Key Point : So copper losses get reduced by n^{2}.
In general for fractional load the efficiency is given by,

$$
\% \eta=\frac{n(\text { VA rating }) \cos \phi}{\mathrm{n}(\text { VA rating }) \cos \phi+P_{i}+\mathrm{n}^{2}\left(\mathrm{P}_{\mathrm{cu}}\right) \mathrm{F} . \mathrm{L} .} \times 100
$$

where $\mathrm{n}=$ Fraction by which load power factor lagging, leading and unity the efficiency expression does not change, and remains same.

O.C. AND S.C. TESTS ON SINGLE PHASE TRANSFORMER

The efficiency and regulation of a transformer on any load condition and at any power factor condition can be predetermined by indirect loading method. In this method, the actual load is not used on transformer. But the equivalent circuit parameters of a transformer are determined by conducting two tests on a transformer which are,

1. Open circuit test (O.C Test)
2. Short circuit test (S.C.Test)

The parameters calculated from these test results are effective in determining the regulation and efficiency of a transformer at any load and power factor condition, without actually loading the transformer. The advantage of this method is that without much power loss the tests can be performed and results can be obtained. Let us discuss in detail how to perform these tests and how to use the results to calculate equivalent circuit parameters.

1.1 Open Circuit Test (O.C. Test)

The experimental circuit to conduct O.C test is shown in the Fig. 1.

Fig 1. Experimental circuit for O.C. test

The transformer primary is connected to a.c. supply through ammeter, wattmeter and variac. The secondary of transformer is kept open. Usually low voltage side is used as primary and high voltage side as secondary to conduct O.C test.

The primary is excited by rated voltage, which is adjusted precisely with the help of a variac. The wattmeter measures input power. The ammeter measures input current. The voltemeter gives the value of rated primary voltage applied at rated frequency.

Sometimes a voltmeter may be connected across secondary to measure secondary voltage which is $\mathrm{V}_{2}=\mathrm{E}_{2}$ when primary is supplied with rated voltage. As voltmeter resistance is very high, though voltmeter is connected, secondary is treated to be open circuit as voltmeter current is always negligibly small.

When the primary voltage is adjusted to its rated value with the help of variac, readings of ammeter and wattmeter are to be recorded.

The observation table is as follows

$\mathrm{V}_{\text {o volts }}$	i_{0} amperes	w_{0} watts
Rated		

$$
\begin{aligned}
& \mathrm{V}_{0}=\text { Rated voltage } \\
& \mathrm{W}_{0}=\text { Input power } \\
& \mathrm{I}_{0}=\text { Input current = no load current }
\end{aligned}
$$

As transformer secondary is open, it is on no load. So current drawn by the primary is no load current I_{o}. The two components of this no load current are,

$$
\begin{aligned}
& I_{\mathrm{m}}=\mathrm{I}_{0} \sin \Phi_{\mathrm{o}} \\
& I_{\mathrm{c}}=\mathrm{I}_{\mathrm{o}} \cos \Phi_{0}
\end{aligned}
$$

where $\cos \Phi_{0}=$ No load power factor
And hence power input can be written as,

$$
W_{0}=V_{0} I_{0} \cos \Phi_{0}
$$

The phasor diagram is shown in the Fig. 2.

Fig. 2

As secondary is open, $\mathrm{I}_{2}=0$. Thus its reflected current on primary is also zero. So we have primary current $I_{1}=l_{0}$. The transformer no load current is always very small, hardly 2 to 4% of its full load value. As $\mathrm{I}_{2}=0$, secondary copper losses are zero. And $\mathrm{I}_{1}=\mathrm{I}_{0}$ is very low hence copper losses on
primary are also very very low. Thus the total copper losses in O.C. test are negligibly small. As against this the input voltage is rated at rated frequency hence flux density in the core is at its maximum value. Hence iron losses are at rated voltage. As output power is zero and copper losses are very low, the total input power is used to supply iron losses. This power is measured by the wattmeter i.e. W_{0}. Hence the wattmeter in O.C. test gives iron losses which remain constant for all the loads.
$\therefore \quad W_{o}=P_{i}=$ Iron losses
Calculations : We know that,

$$
\begin{aligned}
& W_{0}=V_{0} I_{0} \cos \Phi \\
& \cos \Phi_{0}=W_{0} /\left(V_{0} I_{0}\right)=\text { no load power factor }
\end{aligned}
$$

Once $\cos \Phi_{0}$ is known we can obtain,

$$
I_{c}=I_{o} \cos \Phi_{o}
$$

and $\quad I_{m}=I_{o} \sin \Phi_{0}$
Once I_{c} and I_{m} are known we can determine exciting circuit parameters as,
$\mathrm{R}_{\mathrm{o}}=\mathrm{V}_{\mathrm{o}} / \mathrm{I}_{\mathrm{c}} \Omega$
and
$\mathrm{X}_{\mathrm{o}}=\mathrm{V}_{\mathrm{o}} / \mathrm{I}_{\mathrm{m}} \Omega$
Key Point : The no load power factor $\cos \Phi_{0}$ is very low hence wattmeter used must be low power factor type otherwise there might be error in the results. If the meters are connected on secondary and primary is kept open then from O.C. test we get $R_{o}{ }^{\prime}$ and $X_{o}{ }^{\prime}$ with which we can obtain R_{o} and X_{o} knowing the transformation ratio K .

1.2 Short Circuit Test (S.C. Test)

In this test, primary is connected to a.c. supply through variac, ammeter and voltmeter as shown in the Fig. 3.

Fig. 3 Fig 1. Experimental circuit for O.C. test

The secondary is short circuited with the help of thick copper wire or solid link. As high voltage side is always low current side, it is convenient to connect high voltage side to supply and shorting the low voltage side.

As secondary is shorted, its resistance is very very small and on rated voltage it may draw very large current. Such large current can cause overheating and burning of the transformer. To limit this short circuit current, primary is supplied with low voltage which is just enough to cause rated current
to flow through primary which can be observed on an ammeter. The low voltage can be adjusted with the help of variac. Hence this test is also called low voltage test or reduced voltage test. The wattmeter reading as well as voltmeter, ammeter readings are recorded. The observation table is as follows,

V_{sc} volts	I_{sc} amperes	w_{sc} watts
	Rated	

Now the current flowing through the windings are rated current hence the total copper loss is full load copper loss. Now the voltage supplied is low which is a small fraction of the rated voltage. The iron losses are function of applied voltage. So the iron losses in reduced voltage test are very small. Hence the wattmeter reading is the power loss which is equal to full load copper losses as iron losses are very low.
$\therefore \quad \mathrm{W}_{\mathrm{sc}}=\left(\mathrm{P}_{\mathrm{cu}}\right)$ F.L. $=$ Full load copper loss
Calculations : From S.C. test readings we can write,

$$
\mathrm{W}_{\mathrm{sc}}=\mathrm{V}_{\mathrm{sc}} \mathrm{I}_{\mathrm{sc}} \cos \Phi_{\mathrm{sc}}
$$

$\therefore \quad \cos \Phi s c=\mathrm{V}_{s c} \mathrm{I}_{\mathrm{sc}} / \mathrm{W}_{\mathrm{sc}}=$ short circuit power factor
$\mathrm{W}_{\mathrm{sc}}=\mathrm{I}_{\mathrm{sc}}{ }^{2} \mathrm{R}_{1 \mathrm{e}}=$ copper loss
$\therefore \quad \mathrm{R}_{1 \mathrm{e}}=\mathrm{W}_{\mathrm{sc}} / \mathrm{Isc}_{\mathrm{sc}}{ }^{2}$
while $\quad Z_{1 e}=V_{s c} / I_{s c}=V\left(R_{1 e}{ }^{2}+X_{1 e}{ }^{2}\right)$
$\therefore \quad \mathrm{X}_{1 \mathrm{e}}=\mathrm{V}\left(\mathrm{Z}_{1 \mathrm{e}}{ }^{2}-\mathrm{R}_{1 \mathrm{e}}{ }^{2}\right)$

Thus we get the equivalent circuit parameters $R_{1 e}, X_{1 e}$ and $Z_{1 e}$. Knowing the transformation ratio K, the equivalent circuit parameters referred to secondary also can be obtained.

Important Note : If the transformer is step up transformer, its primary is L.V. while secondary is H.V. winding. In S.C. test, supply is given to H.V. winding and L.V is shorted. In such case we connect meters on H.V. side which is transformer secondary through for S.C. test purpose H.V side acts as primary. In such case the parameters calculated from S.C. test readings are referred to secondary which are $\mathrm{R}_{2 \mathrm{e}}, \mathrm{Z}_{2 \mathrm{e}}$ and $\mathrm{X}_{2 \mathrm{e}}$. So before doing calculations it is necessary to find out where the readings are recorded on transformer primary or secondary and accordingly the parameters are to be determined. In step down transformer, primary is high voltage itself to which supply is given in S.C. test. So in such case test results give us parameters referred to primary i.e. $\mathrm{R}_{1 \mathrm{e}}, \mathrm{Z}_{1 \mathrm{e}}$ and $\mathrm{X}_{1 \mathrm{e}}$.

Key point : In short, if meters are connected to primary of transformer in S.C. test, calculations give us $R_{1 e}$ and $Z_{1 e}$ if meters are connected to secondary of transformer in S.C. test calculations give us $R_{2 e}$ and $Z_{2 e}$.

1.3 Calculation of Efficiency from O.C. and S.C. Tests

We know that,
From O.C. test, $\mathrm{W}_{\mathrm{o}}=\mathrm{P}_{\mathrm{i}}$
From S.C. test, $W_{s c}=\left(P_{c u}\right)$ F.L.

$$
\therefore \quad \% \eta \text { on full load }=\frac{V_{2}\left(I_{2}\right) F \cdot L \cdot \cos \phi}{V_{2}\left(I_{2}\right) F \cdot L \cdot \cos +W_{o}+W_{s c}} \times 100
$$

Thus for any p.f. $\cos \Phi_{2}$ the efficiency can be predetermined. Similarly at any load which is fraction of full load then also efficiency can be predetermined as,

$$
\% \eta \text { at any load }=\frac{n \times(\text { VA rating }) \times \cos \phi}{n \times(V A \text { rating }) \times \cos \phi+W_{o}+n^{2} W_{s e}} \times 100
$$

where
$n=$ fraction of full load
or $\quad \% \eta=\frac{n V_{2} I_{2} \cos \phi}{n V_{2} I_{2} \cos \phi+W_{o}+n^{2} W_{s}} \times 100$

$$
\text { where } \quad I_{2}=n\left(I_{2}\right) \text { F.L. }
$$

1.4 Calculation of Regulation

From S.C. test we get the equivalent circuit parameters referred to primary or secondary.
The rated voltages V_{1}, V_{2} and rated currents (I_{1}) F.L. and (I_{2}) F.L. are known for the given transformer. Hence the regulation can be determined as,

$$
\begin{aligned}
\% \mathrm{R} & =\frac{\mathrm{I}_{2} \mathrm{R}_{2 e} \cos \phi \pm \mathrm{I}_{2} \mathrm{X}_{2 e} \sin \phi}{\mathrm{~V}_{2}} \times 100 \\
& =\frac{\mathrm{I}_{1} \mathrm{R}_{1 e} \cos \phi \pm \mathrm{I}_{1} X_{1 e} \sin \phi}{\mathrm{~V}_{1}} \times 100
\end{aligned}
$$

where I_{1}, l_{2} are rated currents for full load regulation.
For any other load the currents I_{1}, I_{2} must be changed by fraction n.
$\therefore \quad I_{1}, I_{2}$ at any other load $=n\left(I_{1}\right)$ F.L., $n\left(I_{2}\right)$ F.L.
Key Point : Thus regulation at any load and any power factor can be predetermined, without actually loading the transformer.

Example 1 : A $5 \mathrm{KVA}, 500 / 250 \mathrm{~V}, 50 \mathrm{~Hz}$, single phase transformer gave the following readings,
O.C. Test : $500 \mathrm{~V}, 1 \mathrm{~A}, 50 \mathrm{~W}$ (L.V. side open)
S.C. Test : $25 \mathrm{~V}, 10 \mathrm{~A}, 60 \mathrm{~W}$ (L.V. side shorted)

Determine : i) The efficiency on full load, 0.8 lagging p.f.
ii) The voltage regulation on full load, 0.8 leading p.f.
iii) The efficiency on 60% of full load, 0.8 leading p.f.
iv) Draw the equivalent circuit referred to primary and insert all the values in it.

Solution : In both the tests, meters are on H.V. side which is primary of the transformer. Hence the parameters obtained from test results will be referred to primary.

$$
\begin{array}{ll}
\quad \text { From O.C. test, } \quad \mathrm{V}_{\mathrm{o}}=500 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{o}}=1 \mathrm{~A}, \quad \mathrm{~W}_{\mathrm{o}}=50 \mathrm{~W} \\
\therefore & \cos \Phi_{\mathrm{o}}=\mathrm{W}_{\mathrm{o}} / \mathrm{V}_{\mathrm{o}} \mathrm{I}_{\mathrm{o}}=50 /(500 \times 1)=0.1 \\
\therefore & \mathrm{I}_{\mathrm{c}}=\mathrm{I}_{0} \cos =1 \times 0.1=0.1 \mathrm{~A} \\
\text { and } & \mathrm{I}_{\mathrm{m}}=\mathrm{I}_{\mathrm{o}} \sin \Phi_{\mathrm{o}}=1 \times 0.9949=0.9949 \mathrm{~A} \\
\therefore & \mathrm{R}_{\mathrm{o}}=\mathrm{V}_{\mathrm{o}} / \mathrm{I}_{\mathrm{c}}=500 / 0.1=5000 \Omega \\
\text { and } & \mathrm{X}_{\mathrm{o}}=\mathrm{V}_{\mathrm{o}} / \mathrm{I}_{\mathrm{m}}=500 / 0.9949=502.52 \Omega \\
\text { and } & \mathrm{W}_{\mathrm{o}}=\mathrm{P}_{\mathrm{i}}=\text { iron losses }=50 \mathrm{~W} \\
\text { From S.C. test, } & \mathrm{V}_{\mathrm{sc}}=25 \mathrm{~V}, \mathrm{I}_{\mathrm{sc}}=10 \mathrm{~A}, \mathrm{~W}_{\mathrm{sc}}=60 \mathrm{~W} \\
\therefore & \mathrm{R}_{1 \mathrm{e}}=\mathrm{W}_{\mathrm{sc}} / \mathrm{I}_{\mathrm{sc}}{ }^{2}=60 /(10)^{2}=0.6 \Omega \\
& \mathrm{Z}_{1 \mathrm{e}}=\mathrm{V}_{\mathrm{sc}} / \mathrm{I}_{\mathrm{sc}}=25 / 10=2.5 \Omega \\
\therefore & \mathrm{X}_{1 \mathrm{e}}=\mathrm{V}\left(2.5^{2}-0.6^{2}\right)=2.4269 \Omega
\end{array}
$$

$\left(I_{1}\right)$ F.L. $=$ VA rating $/ V_{1}$

$$
=\left(5 \times 10^{3}\right) / 500=10 \mathrm{~A}
$$

and $\quad I_{s c}=\left(I_{1}\right)$ F.L.
$\therefore \quad \mathrm{W}_{\mathrm{sc}}=\left(\mathrm{P}_{\mathrm{cu}}\right)$ F.L. $=60 \mathrm{~W}$
i) η on full load, cos $=0.8$ lagging

$$
\begin{aligned}
\% \eta & =\frac{(V A \text { rating }) \cos \phi_{2}}{\left(\mathrm{VA} \text { rating } \cos \phi_{2}+\mathrm{P}_{i}+\left(\mathrm{P}_{\mathrm{cu}}\right) \mathrm{F} . \mathrm{L}\right.} \times 100 \\
& =\frac{5 \times 10^{3} \times 0.8}{5 \times 10^{3} \times 0.8+50+60} \times 100=97.32 \%
\end{aligned}
$$

ii) Regulation on full load, $\cos \Phi_{2}=0.8$ leading

$$
\begin{aligned}
\% \mathrm{R} & =\frac{\left(I_{1}\right) \mathrm{F} . \mathrm{L} . \mathrm{R}_{\mathrm{le}} \cos \phi-\left(\mathrm{I}_{1}\right) \mathrm{F} . \mathrm{L} . \mathrm{X}_{\mathrm{le}} \sin \phi}{V_{1}} \times 100 \\
& =\frac{10 \times 0.6 \times 0.8-10 \times 24269 \times 0.6}{500} \times 100 \\
& =-1.95 \%
\end{aligned}
$$

iii) For 60% of full load, $n=0.6$ and $\cos \Phi_{2}=0.8$ leading]
$\therefore \quad \mathrm{P}_{\mathrm{cu}}=$ copper loss on new load $=\mathrm{n}^{2} \mathrm{x}\left(\mathrm{P}_{\mathrm{cu}}\right)$ F.L.

$$
=(0.6)^{2} \times 60=21.6 \mathrm{~W}
$$

$$
\text { = } 97.103 \text { \% }
$$

iv) The equivalent circuit referred to primary is shown in the Fig. 4.

Fig. 4

Example 2 : The open circuit and short circuit tests on a $10 \mathrm{KVA}, 125 / 250 \mathrm{~V}, 50 \mathrm{~Hz}$, single phase transformer gave the following results :
O.C. test : $125 \mathrm{~V}, 0.6 \mathrm{~A}, 50 \mathrm{~W}$ (on L.V. side)
S.C. test : $15 \mathrm{~V}, 30 \mathrm{~A}$. 100 W (on H.V. side)

Calculate : i) copper loss on full load
ii) full load efficiency at 0.8 leading p.f.
iii) half load efficiency at 0.8 leading p.f.
iv) regulation at full load, 0.9 leading p.f.

Solution : From O.C. test we can weite,

$$
\mathrm{W}_{\mathrm{o}}=\mathrm{P}_{\mathrm{i}}=50 \mathrm{~W}=\text { Iron loss }
$$

From S.C. test we can find the parameters of equivalent circuit. Now S.C. test is conducted on H.V. side i.e. meters are on H.V. side which is transformer secondary. Hence parameters from S.C. test results will be referred to secondary.

$$
\begin{array}{ll}
& \mathrm{V}_{\mathrm{sc}}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{sc}}=30 \mathrm{~A}, \mathrm{~W}_{\mathrm{sc}}=100 \mathrm{~W} \\
\therefore \quad & \mathrm{R}_{2 \mathrm{e}}=\mathrm{W}_{\mathrm{sc}} /\left(\mathrm{I}_{\mathrm{sc}}\right)^{2}=10 /(30)^{2}=0.111 \Omega \\
& \mathrm{Z}_{1 \mathrm{e}}=\mathrm{V}_{\mathrm{sc}} / \mathrm{I}_{\mathrm{sc}}=15 / 30=0.5 \Omega \\
\therefore & \mathrm{X}_{2 \mathrm{e}}=\mathrm{V}\left(\mathrm{Z}_{2 \mathrm{e}}{ }^{2}-\mathrm{R}_{2 \mathrm{e}}{ }^{2}\right)=0.4875 \Omega
\end{array}
$$

i) Copper loss on full load
$\left(I_{2}\right)$ F.L. $=$ VA rating $/ V_{2}=\left(10 \times 10^{3}\right) / 250=40 \mathrm{~A}$
In short circuit test, $\mathrm{I}_{\mathrm{sc}}=30 \mathrm{~A}$ and not equal to full load value 40 A .
Hence $W_{s c}$ does not give copper loss on full load
$\therefore \quad \mathrm{W}_{\mathrm{sc}}=\mathrm{P}_{\mathrm{cu}}$ at $30 \mathrm{~A}=100 \mathrm{~W}$
Now $\quad P_{c u} \propto I^{2}$
$\left(P_{c u}\right.$ at $\left.30 A\right) /\left(P_{c u}\right.$ at $\left.40 A\right)=(30 / 40)^{2}$
$100 /\left(P_{\text {cu }}\right.$ at $\left.40 A\right)=900 / 1600$
P_{cu} at $40 \mathrm{~A}=177.78 \mathrm{~W}$
$\therefore \quad\left(\mathrm{P}_{\mathrm{cu}}\right)$ F.L. $=177.78 \mathrm{~W}$
ii) Full load $\eta, \cos \Phi_{2}=0.8$

$$
\begin{aligned}
\% \eta \text { on full load } & =\frac{V_{2}\left(I_{2}\right) F \cdot L \cdot \cos \phi_{2}}{V_{2}\left(I_{2}\right) F \cdot L \cdot \cos \phi_{2}+P_{1}+\left(\mathrm{P}_{\mathrm{cu}}\right) \mathrm{F} \cdot \mathrm{~L} \cdot} \times 100 \\
& =\frac{250 \times 40 \times 0.8}{250 \times 40 \times 0.8+50+17778} \times 100=97.23 \%
\end{aligned}
$$

iii) Half load $\eta, \cos \Phi_{2}=0.8$

$$
n=0.5 \text { as half load, } \quad\left(I_{2}\right) \text { H.L. }=0.5 \times 40=
$$

$\therefore \% \eta$ on half load $=\frac{V_{2}\left(I_{2}\right) H . L \cdot \cos \phi_{2}}{V_{2}\left(I_{2}\right) H \cdot L \cos \phi_{2}+P_{1}+n^{2}\left(P_{c u}\right) F . L} \times 100$

$$
\begin{aligned}
& =\frac{\mathrm{n}(\mathrm{VA} \text { rating }) \cos \phi_{2}}{\mathrm{n}(\mathrm{VA} \text { rating }) \cos \phi_{2}+\mathrm{P}_{1}+\mathrm{n}^{2}\left(\mathrm{P}_{\mathrm{cu}}\right) \mathrm{F} . \mathrm{L} .} \times 100 \\
& =\frac{05 \times 10 \times 10^{3} \times 0.8}{05 \times 10 \times 10^{3} \times 0.8+50+(05)^{2} \times 17778} \times 100
\end{aligned}
$$

= 97.69\%
iv) Regulation at full load, $\cos \Phi=0.9$ leading

$$
\begin{array}{r}
\% R=\frac{\left(I_{2}\right) \text { F.L. } R_{2 e} \cos 0-\left(I_{2}\right) \text { F.L. } X_{2 e} \sin \varphi}{V_{2}} \times 100 \\
= \\
\\
=\begin{array}{r}
40 \times 0.111 \times 0.9-40 \times 0.4875 \times 0.4358 \\
250
\end{array} 100 \\
=-1.8015 \%
\end{array}
$$

15.Additional topics

1)AC transients
2)Auto transformers

16 University previous Question papers

Time: 3 hours
Max. Marks: 75

Answer any five questions

All questions carry equal marks
1.a) Explain the procedure to find the solution of a differential equation using Laplace transform method.
b) Find $\mathrm{i}(\mathrm{t})$ in the circuit in figure 1 for $\mathrm{t}>0$. Assume that the switch has been closed for a long time.

Figure: 1
2.a) Determine the y parameters for the two-port shown in figure 2.

Figure: 2
b) Obtain the condition of transmission parameters for two network connected in cascade.
3.a) Explain the variations of characteristic impedance $\left(\mathrm{Z}_{0}\right)$, attenuation constant (α) and phase constant (β) with frequency with the help of neat sketch in band elimination filter.
b) Design a composite high pass filter to operate into a load of 800Ω and have a cut off frequency of 1.2 kHz . The filter is to have one constant k section, one m derived section with $\mathrm{f}_{\infty}=1.1 \mathrm{kHz}$ and suitable termination half section. $[8+7]$
4.a) Design symmetrical lattice attenuator with 30 dB attenuation, working into 600Ω impedance. $\mathrm{N}=\operatorname{Antilog}_{10}(\mathrm{D} / 20)=\operatorname{Antilog} 10\left[\frac{20}{20}\right] \quad 10$.
b) Derive the design equations for
i) Symmetrical T attenuator
ii) Symmetrical $п$ attenuator.
5.a) Explain applications of various d.c. generators.
b) A 500 V dc generator is supplying a 30 kW load has a resistance of 0.4Ω, shunt field resistance of 300Ω. Determine the armature current, induced emf. Allow a contact drop is IV per brush.
6.a) Explain the various losses in a DC motor.
b) A 250 V d.c. shunt motor has an armature resistance of 0.5Ω and shunt field resistance of 300Ω, when driving at 600 rpm at constant load. Armature takes 20 A , speed is required to rise from 600 rpm to 800 rpm . Calculate the additional resistance to be inserted in the field circuit.
[7+8]
7.a) Draw and explain the no-load phasor diagram of a 1-phase transformer. Discuss how primary leakage flux is accounted for in the phasor diagram.
b) A transformer when tested on full load is found to have copper loss of 1.8% and reactance drop of 4.8%. Calculate the full load regulation at power factors of
i) 0.8 lag
ii) UPF
iii) 0.707 leading.
8.a) Discuss various applications of stepper motor and synchros.
b) Explain the working principle of a capacitor start induction motor. And draw the speed-torque characteristics.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B. Tech II Year II Semester Examinations, June-2014 PRINCIPLES OF ELECTRICAL ENGINEERING (Common to ECE, ETM)

Time: 3 Hours

Max. Marks: 75

Answer any Five Questions
 All Questions Carry Equal Marks

a) A capacitor with initial voltage v_{0} is connected to resistor of $\mathrm{R} \Omega$ at $t=0$, derive the expression for the voltage across the capacitor and current through the capacitor at any time $\mathrm{t}>0$ and plot the waveforms.
b) Find $i\left(0^{+}\right)$in the circuit shown in Figure 1.

Figure: 1
Find $A B C D$ parameters of the circuit in Figure 2.

Figure: 2
A low pass π-section filter consists of an inductance of 25 mH in series arm and two capacitors of $0.2 \mu \mathrm{~F}$ in shunt arms. Calculate the cut-off frequency, design impedance, attenuation at 5 KHz and phase shift at 2 KHz . Also find the characteristic impedance at 2 KHz .

1) Explain T-type attenuator.
2) Design a T-type attenuator to give an attenuation of 60 dB and to work in a line of 500Ω impedance.
i) Derive an expression for the induced emf in the armature of a DC Machine.
3) A 4-pole, lap-wound, dc shunt generator has a useful flux per pole of 0.07 Wb . The armature winding consists of 220 turns each of 0.004 ohms resistance. Calculate the terminal voltage when running at 900 rpm , if the armature current is 50A.

Discuss various methods of speed control of dc shunt motor?
A 250 V DC shunt motor takes 4 A when running unloaded. Its armature and field resistances are 0.3Ω and 250Ω respectively. Calculate the efficiency when the dc shunt motor taking a current of 60 A .

Answer any five questions
 All questions carry equal marks

Max. Marks: 75
1.a) Obtain the behaviour and characteristics of an R-L Circuit subjected to unit step excitation and derive the expression of transient current flows in the circuit.
b) Find $\mathrm{i}(\mathrm{t})$ in the network shown below in figure 1 , when the switch K is closed at $\mathrm{t}=0^{+}$. A current of 2 A was flowing at $\mathrm{t}=0^{-}$in the inductor.
[15]

2.a) For a passive two port network derive the expression for transmission and hybrid parameters.
b) Find the ABCD parameters of the network shown below in figure 2 .

3.a) Explain the nature of characteristic impedance, phase angle, cross over frequency in pass and stop bands.
b) Derive the important relations in constant-k low pass filter and corstant-k high pass filter.
4. Discuss the functioning and significance of T-type and π-type attenuators. [15]
5.a) Derive the EMF equation of D.C generator.
b) A 110 V d.c shunt generator delivers a load current of 50 A . The armature resistance is 0.2Ω, and the field resistance is 55Ω. The generator, rotating at a speed of 1800 rpm , has 6 poles, lap-wound, and a total of 360 conductors. Calculate no-load voltage at the armature and the flux per pole.
6. Draw and explain the D.C series-wound, shunt-wound and compound wound motor characteristics and their applications.
[15]
7.a) Describe the principle of operation and constructional features of a single phase transformer.
b) Explain i) Efficiency ii) Voltage regulation of a 1-phase transformer.
8.a) Explain the principle of operation of capacitor-start single phase induction motor with phasor diagram.
b) Briefly discuss the functioning and applications of synchros.

II B.TECH - II SEMESTER EXAMINATIONS, APRIL/MAY, 2011
 PRINCIPLES OF ELECTRICAL ENGINEERING
 (COMMON TO ELECTRICAL AND COMMUNICATION ENGINEERING \& ELECTRONICS AND TELEMATICS ENGINEERING)
 Time: 3hours Max. Marks: 75
 Answer any FIVE questions
 All Questions Carry Equal Marks

1.a) For the circuit shown below Figure. 1, find the current equation when switch S is opened at t $=0$.

Figure. 1
b) Convert the current source shown below Figure. 2 in to a voltage source in the S domains. [7+8]

Figure. 2
2. Find Z and Y parameter of the network shown below Figure. 3. [15]

Figure. 3
3. Design a band elimination filter having a design impedance of 600Ω and cut - off frequencies $\mathrm{f}_{1}=2 \mathrm{KHz}$ and $\mathrm{f}_{2}=6 \mathrm{KHZ}$. [15]
4. Explain T - type attenuator and also design a T - type attenuator to give an attenuation of 60 dB and to work in a line of 500Ω impedance. [15]
5. What are the different types of dc generators? Show the connection diagrams and load characteristics of each type. [15]
6.a) Explain why a dc series motor should never run unloaded.
b) A $200 \mathrm{~V}, 14.92 \mathrm{~kW}$, dc shunt motor when tested by Swinburne's method gave the following test results.
Running light: Armature current of 6.5 A and field current $=2.2 \mathrm{~A}$
With armature locked: $I_{a}=70 \mathrm{~A}$ when potential difference of 3 V was applied to the brusher.
Estimate efficiency of motor when working under full load. [5+10]
7. A $50 \mathrm{~Hz}, 1 \emptyset, 100 \mathrm{KVA}$ transformer has full load copper loss of 1200 W and its iron loss is 960W. Calculate:
a) The efficiency at full load, unity power factor.
b) The efficiency at half load, 0.8 power factor.
c) The efficiency at 7.5% of full load, 0.7 power factor. [15]
8. Write short notes on the following:
a) AC Servo motors.
b) Shaded pole motor.
c) Synchros. [15]

II B.TECH - II SEMESTER EXAMINATIONS, APRIL/MAY, 2011
 PRINCIPLES OF ELECTRICAL ENGINEERING
 (COMMON TO ELECTRICAL AND COMMUNICATION ENGINEERING \& ELECTRONICS AND TELEMATICS ENGINEERING)
 Time: 3hours Max. Marks: 75
 Answer any FIVE questions
 All Questions Carry Equal Marks

1.a) For the below circuit (Figure.1), find the current in 20Ω when the switch is opened at $\mathrm{t}=0$.

Figure. 1
b) Transform the below circuit (Figure. 2) in to ' S ' domain and determine the Laplace transform impedance. [7+8]

Figure. 2
2. Determine Y - parameters of the below (Figure. 3) network. Hence determine the h-parameters. [15]

Figure. 3
3. Design a m - derived high pass filter with a cut - off frequency of 10 KHz ; design impedance of 5Ω and $\mathrm{m}=0.4$. [15]
4. Explain the lattice attenuator and also design a lattice attenuator to have a characteristic impedance of 800Ω and attenuation of 20 dB . [15]
5. State the principle of operation of a dc generator and derive the expression for the emf generated. [15]
6.a) Derive the torque equation of a dc motor.
b) A 4 pole, 500 V dc shunt motor has 700 wave connected armature conductors. The full load armature current is 60 A and the flux per pole is 30 mWb . Calculate the full load speed if the motor armature resistance is 0.2Ω and brush drop is 1 V per brush. [7+8]
7. Draw the phasor diagram of a single phase transformer under load conditions for lagging, leading and unity power factors. [15]
8. Explain in detail the principle of operation and constructional details of a shaded pole motor. [15]

II B.TECH - II SEMESTER EXAMINATIONS, APRIL/MAY, 2011
 PRINCIPLES OF ELECTRICAL ENGINEERING
 (COMMON TO ELECTRICAL AND COMMUNICATION ENGINEERING \& ELECTRONICS AND TELEMATICS ENGINEERING)
 Time: 3hours Max. Marks: 75
 Answer any FIVE questions
 All Questions Carry Equal Marks

1.a) For the below circuit (Figure. 1), find the current equation $i(t)$, when the switch is opened at t $=0$.

Figure. 1
b) Transform the below circuit (Figure.2) in to ' S ' domain and determine the laplace impedance. [7+8]

Figure. 2
2. Determine the transmission parameter and hence determine the short circuit admittance parameters for the below circuit (Figure.3). [15]

Figure. 3
3. What is a constant - K low pass filter, derive its characteristics impedance. [15]
4. Explain π - type attenuator and also design it to give 20db attenuation and to have characteristic impedance of 100Ω. [15]
5. Explain in detail the construction and principle of operations of DC generators. [15]
6. Discuss in detail the different methods of speed control of a dc motor. [15]
7. Open circuit and short circuit tests on a $5 \mathrm{KVA}, 220 / 400 \mathrm{~V}, 50 \mathrm{~Hz}$, single phase transformer gave the following results:
OC Test: $220 \mathrm{~V}, 2 \mathrm{~A}, 100 \mathrm{~W}$ (lv side)
SC Test: 40V, 11.4A, 200W (hv side)
Determine the efficiency and approximate regulation at full load, 0.9 power factor lagging. [15]
8. Write a short note on the following:
a) Capacitor motors.
b) Stepper motor.
c) AC tachometers. [15]

II B.TECH - II SEMESTER EXAMINATIONS, APRIL/MAY, 2011
 PRINCIPLES OF ELECTRICAL ENGINEERING
 (COMMON TO ELECTRICAL AND COMMUNICATION ENGINEERING \& ELECTRONICS AND TELEMATICS ENGINEERING)
 Time: 3hours Max. Marks: 75
 Answer any FIVE questions
 All Questions Carry Equal Marks

1.a) Determine the current ifor $\mathrm{t} \geq 0$ if initial current $\mathrm{i}(0)=1$ for the below circuit (Figure. 1).

Figure. 1
b) Switch is opened at $t=0$ in the below circuit (Figure. 2). Then find the current ' i '.

Figure. 2
2. Obtain Z parameters of the below circuit (Figure. 3) and from there Z - parameters derive h parameters. [15]

3. A low pass π section filter consists of an inductance of 25 mH in series arm and two capacitors of $0.2 \mu \mathrm{~F}$ in shunt arms. Calculate the cut - off frequency, design impedance, attenuation at 5 KHz and phase shift at 2 KHz . Also find the characteristic impedance at 2 KHz . [15]
4. Explain Bridged - T attenuator and also design it with an attenuation of 20 dB and terminated in a load of 500 Ω. [15]
5. A 6 - pole dc shunt generator with a wave - wound armature has 960 conductors. It runs at a speed of 500 rpm . A load of 20Ω is connected to the generator at a terminal voltage of 240 V . The armature and field resistances are 0.3Ω and 240Ω respectively. Find the armature current, the induced emf and flux per pole. [15]
6. Sketch the speed - load characteristics of a dc shunt, series and compound motors. Account for the shape of the above characteristic curves. [15]
7.a) Derive the expression for the induced emf of a transformer.
b) A 125 KVA transformer having primary voltage of 2000 V at 50 Hz has 182 primary and 40 secondary turns. Neglecting losses, calculate:
i) The full load primary and secondary currents.
ii) The no-load secondary induced emf.
iii) Maximum flux in the core. [7+8]
8. Draw the circuit diagram of capacitor - start, capacitor - run single phase induction motor and explain its working. Where this type of motor is commonly used? [15]

PRINCIPLES OF ELECTRICAL ENGINEERING

(COMMON TO ECE, ETM)

Time: $\mathbf{3}$ hours Max. Marks: $\mathbf{8 0}$

Answer any five questions

All questions carry equal marks

1.a) Find $v(t)$ for $t \geq 0$, when the switch is opened at $t=0$ for the circuit shown in Fig.1.

Fig. 1
b) Determine $i(t)$ for the circuit shown in Fig.2. When the switch is closed at $t=0$. Assume initial current through inductor is zero. [8+7]

Fig. 2
2. Determine the Y - parameters for the two - port network shown in Fig. 3 and also find $\mathrm{g}-$ parameters. [15]

Fig. 3
3. Design a band stop, constant - K filter with cut off frequencies of 4 KHz and 10 KHz and nominal characteristic impedance of 500Ω. [15]
4.a) Explain about a symmetrical π - attenuator.
b) Design a symmetrical π - attenuator to provide attenuation of 20 dB and design impedance of and design impedance of $400 \Omega[7+8]$
5.a) Derive an expression for the induced emf in the armature of a DC Machine.
b) The armature of a 4 - pole lap wound shunt generator has 480 conductors. The flux per pole is 0.05 Wb . The armature and field resistances are 0.05Ω and 50Ω. Find the speed of the machine when supplying 450A at a terminal voltage of 250 V . [7+8]
6.a) Write about the various losses occurring in a dc motor and name the parts of the machine in which these occur.
b) A 250 V DC shunt motor takes 4 A when running unloaded. Its armature and field resistances are 0.3Ω and 250Ω respectively. Calculate the efficiency when the dc shunt motor taking a current of 60A. [7+8]
7.a) Explain the principle of operation of 1- \varnothing Transformer.
b) Derive the equivalent circuit of 1- \varnothing Transformer and discuss its significance.
[7+8]
8. Write short notes on the following:
a) AC Tachometers.
b) Stepper motors.
c) Capacitor motors. [15]

B.Tech II Year - II Semester Examinations, December-2011 / January-2012

PRINCIPLES OF ELECTRICAL ENGINEERING

(COMMON TO ECE, ETM)

Time: 3 hours Max. Marks: 80

Answer any five questions

All questions carry equal marks

1.a) Find $v(t)$ for $t \geq 0$ and initial energy stored across a capacitor for the circuit shown in Fig.1. When the switch is opened at $\mathrm{t}=0$.

Fig. 1
b) Determine the Laplace Transforms Impedance of the circuit shown in Fig.2. [8+7]

Fig. 2
2. Find the Transmission parameters and Z - Parameters for the two - port network shown in Fig.3.

Fig. 3
3. Design a band pass, constant - K filter with cut - off frequency of 4 KHz and nominal characteristic impedance of 500Ω. [15]
4.a) Explain Symmetrical Bridge T - type attenuator.
b) Design a symmetrical bridge T - attenuator with attenuation of 20 dB and design impedance of 600Ω.
5.a) Explain different types of dc generators with neat sketches and give the application of each.
b) A -4 pole, lap wound armature when driven at 600 rpm generates 120 V . If the flux per pole is 0.025 Wb , find the number of conductors on its armature. [7+8]
6.a) What are the various methods of speed control of dc shunt motor?
b) A $250 \mathrm{~V}, 10 \mathrm{~kW}$ shunt motor takes 2.5 A when running light. The armature and field resistances are 0.3Ω and 400Ω respectively. Brush contact drop of 2 V . Find the full load efficiency of motor? [7+8]
7.a) Derive the expression for the induced emf of a Transformer.
b) A $6600 / 400 \mathrm{~V}, 50 \mathrm{~Hz}$, single phase Transformer has a net cross-sectional area of the core of $428 \mathrm{~cm}^{2}$. The maximum flux density in the core is 1.5 Tesla. Calculate the number of turns in the primary and secondary windings. [7+8]
8. Explain the working principle of capacitor - start and capacitor - run single phase induction motors with the circuit diagram and also give their applications. [15]

B.Tech II Year - II Semester Examinations, December-2011 / January-2012

PRINCIPLES OF ELECTRICAL ENGINEERING

(COMMON TO ECE, ETM)

Time: $\mathbf{3}$ hours Max. Marks: $\mathbf{8 0}$

Answer any five questions

All questions carry equal marks

1.a) Find $i(t)$ for $t>0$ for the circuit shown in Fig.1. When the switch is opened at $t=0$.

Fig. 1
b) Determine the current $\mathrm{i}(\mathrm{t})$ for $\mathrm{t} \geq 0$, for the circuit shown in Fig.2. Assume initial conditions are zero. [10+5]

Fig. 2
2. Determine the Z - Parameters and transmission parameters of the current shown in Fig.3. [15]

Fig. 3
3. Design a low pass constant - K (i) T - Section and (ii) π - section filter with cut - off frequency (f) 6 kHz and nominal characteristic impedance of 500Ω. [15]
4.a) Explain symmetrical lattice Attenuator.
b) Design a symmetrical lattice attenuator to have characteristic impedance of 600Ω and attenuation of 20 dB . [7+8]
5. Explain in detail the Load characteristics of various DC generators with appropriate sketches and also give the applications of various generators. [15]
6.a) Derive the torque equation of a dc motor.
b) A 4 - pole, 220 V dc series motor has a wave connected armature with 1200 conductors. The flux per role is $20 \times 10^{-3} \mathrm{wb}$, when the motor is drawing 46A. Armature and series field resistances are 0.25Ω and 0.15Ω respectively. Find
i) the speed ii) Total torque. [7+8]
7.a) Explain the importance of open circuit and short - circuit tests on a transformer.
b) Determine the full - load efficiency of 80 KVA, $1100 / 250 \mathrm{~V}, 50 \mathrm{~Hz}$, Single phase transformer with iron losses of 800 W and full - load copper losses of 400 W on LV side at unity power factor. [7+8]
8. Write short notes on the following:
a) Shaded - Pole motor
b) Capacitor motor
c) AC Servo motor. [15]

B.Tech II Year - II Semester Examinations, December-2011 / January-2012

PRINCIPLES OF ELECTRICAL ENGINEERING

(COMMON TO ECE, ETM)

Time: $\mathbf{3}$ hours Max. Marks: 80

Answer any five questions

All questions carry equal marks

1.a) Determine i, when the switch is opened at $t=0$ for the circuit shown in Fig.1. Assume that the switch is closed for a long time.

Fig. 1
b) Determine the current i for $t \geq 0$, if the initial current is zero, for the circuit shown in Fig. 2 . [7+8]

Fig. 2
2. Determine h - parameters for the network shown in Fig.3. [15]

3.A high pass constant - K filter with cut - off frequency 40 kHz is required to procedure a maximum attenuation at 36 kHz when used with terminated resistance of 500Ω. Design a suitable m - derived T - section. [15]
4.a) Draw the circuit of symmetrical lattice attenuation. Derive the design equation.
b) Design a symmetrical lattice attenuator to have attenuation of 20 dB and characteristic impedance of 500Ω. [7+8]
5.a) Describe with suitable diagrams the principle of operation of a dc generator.
b) A 4 pole dc generator runs at 1000 rpm . Its armature is lap wound and has 740 conductors on its periphery. The useful flux per pole is 0.04 wb . Calculate the emf generated on open circuit. [8+7]
6.a) Explain the various losses which occurs in a dc motor.
b) A 500 V dc shunt motor draws 4 A on no load. The field current of the motor is 1.0 A . Its armature resistance including brushes is 0.2Ω. Find the efficiency, when the input current is 20A. [7+8]
7. Open circuit and short circuit tests conducted on a 10KVA, $500 / 2000 \mathrm{~V}, 50 \mathrm{~Hz}$, Single phase transformer gave the following readings:

OC Test: $500 \mathrm{~V}, 120 \mathrm{~W}$ on primary side.
SC Test: 15V, 20A, 100W on primary side.
Determine the efficiency on full load unity power factor. [15]
8. Write short notes on the following:
a) Capacitor - start motors.
b) Shaded pole motors
c) AC Tachometers

17.Question Bank

UNIT I:TRANSIENT ANALYSIS

Short Answer Questions:

1. What is meant by steady state condition?
2. Explain in brief about transient response of a network.
3. Explain the initial conditions of basic passive elements.
4. Give summary of passive elements under steady state ($\mathrm{t} \rightarrow \infty$) and at ($\mathrm{t}=0^{+}$) Immediately after switching.
5. Obtain the expression for current $i(t)$ for $t \geq 0$ in a driven series RL circuit with DC excitation, Hence obtain expression for $\mathrm{V}_{\mathrm{L}}(\mathrm{t}), \mathrm{V}_{\mathrm{R}}(\mathrm{t}), \mathrm{P}_{\mathrm{R}}(\mathrm{t})$ and $\mathrm{P}_{\mathrm{L}}(\mathrm{t})$.
6. Derive the expression for current $i(t)$ for $t \geq 0$ in a undriven series $R L$ circuit, Assume DC excitation, Also obtain $\mathrm{V}_{\mathrm{L}}(\mathrm{t})$.
7. What is meant by driven circuit and undriven circuit?
8. Derive expression for $\mathrm{V}_{\mathrm{c}}(\mathrm{t})$ for $\mathrm{t} \geq 0$, for driven series RC circuit for DC excitation.
9. Obtain transient response of undriven or source free series RC circuit.
10. What is time constant? Explain the significance of time constant in case of RL series circuit and RC series circuit with DC excitation.

Long Answer Questions:

1. Derive the expression for transient response of a driven series RLC circuit for DC excitation. State different types of roots possible and write appropriate solution for the roots.
2. Define the following terms.
a. Critical Resistance $\left(R_{c}\right)$
b. Damping Ratio
c. Natural Frequency $\left(\omega_{n}\right)$
d. Damped Frequency $\left(\omega_{d}\right)$
3. A DC voltage of 20 V is applied in a series RL circuit, where $R=5 \Omega$ and $L=10 \mathrm{H}$, Find
a) Time Constant
b) Max Value of Stored Energy.

4. Switch is closed at $\mathrm{t}=0$, with the capacitor uncharged. Find the values of $\mathrm{i}, \frac{d i}{d t}, \frac{d^{2} i}{d t}$ at

$$
\mathrm{t}=0^{+} .
$$

5.. Switch is closed at $\mathrm{t}=\mathrm{o}$, Assume initial current of inductor to be zero. Find the values of i , $\frac{d i}{d t}, \frac{d^{2} i}{d t}$ at $\mathrm{t}=0^{+}$.

6. In the circuit shown, the relay is adjusted to operate at a current of 5 A at $\mathrm{t}=0$, switch is closed, The relay is found to operate at $\mathrm{t}=0.347 \mathrm{sec}$. Find of inductance.

7.a.In a series RL circuit shown in fig. the switch is in position 1 for long time to establish a steady state and then moved to position 2 at $\mathrm{t}=0$. Find the $\mathrm{i}(\mathrm{t})$ for $\mathrm{t}=0$.

b. A series RL circuit, with $\mathrm{R}=30 \Omega, \mathrm{~L}=15 \mathrm{H}, \mathrm{V}=60(\mathrm{dc})$, applied at $\mathrm{t}=0$, determine $\mathrm{I}, \mathrm{V}_{\mathrm{R}}, \mathrm{V}_{\mathrm{L}}$ at transient state.

UNIT - II TWO PORT NETWORK PARAMETERS

Express the elements of a T-network in terms of the ABCD parameters.

LONG ANSWER QUESTIONS

1. Obtain the expression for y-parameters in terms of transmission parameters.
(Nov./Dec-2004, Set - 1, May/June-2004, Set - 4)
2. Find the π-equivalent circuit for the following two port network.
(May-2005, Set - 1, 8 Marks)

parameters for the network

June-2005, Set - 1, June 2004, Set - 2, 8 Marks)
4. Find z-parameters of V_{1} the figure.
(Aug.-2006, Set - 4, June-

5. Determine the z-parameters of the network shown in the figure.
(June-2006, Set-1, 8 Marks)
6. Determine

parameters of in the figure. 2006, Set - 4, 8
7. The y-parameters network are as $Y_{11}=0.6 s, \quad Y_{12}=-$ 1.2s.

Determine (i) ABCD parameters,
(ii) Equivalent π network.
8. z - parameters for a two port network are given as follows $Z_{11}=25 \Omega, Z_{12}=Z_{21}=20 \Omega$,
$Z_{22}=50 \Omega$. Find the equivalent T network.
(June-2006, Set - 3, 8 Marks)
9. Obtain y-parameters of the following bridged T network.

UNIT III:FILTERS \& ATTENUATORS

Long Answer Questions:

1. Design a band elimination filter having a design impedance of 600Ω and cut - off frequencies $\mathrm{f}_{1}=2 \mathrm{KHz}$ and $\mathrm{f}_{2}=6 \mathrm{KHZ}$.
2. Explain T - type attenuator and also design a T - type attenuator to give an attenuation of 60 dB and to work in a line of 500Ω impedance.
3. Design a m - derived high pass filter with a cut - off frequency of 10 KHz ; design impedance of 5Ω and $m=0.4$.
4. Explain the lattice attenuator and also design a lattice attenuator to have a characteristic impedance of 800Ω and attenuation of 20 dB .
5. What is a constant - K low pass filter, derive its characteristics impedance.
6. Explain π - type attenuator and also design it to give 20 db attenuation and to have characteristic impedance of 100Ω.
7. Design a band stop, constant - K filter with cut off frequencies of 4 KHz and 10 KHz and nominal characteristic impedance of 500Ω.
9.a) Explain about a symmetrical π - attenuator.
b) Design a symmetrical $\pi-$ attenuator to provide attenuation of 20 dB and design impedance of and design impedance of 400Ω
8. Design a band pass, constant - K filter with cut - off frequency of 4 KHz and nominal characteristic impedance of 500Ω.
11.a) Explain Symmetrical Bridge T - type attenuator.
b) Design a symmetrical bridge T - attenuator with attenuation of 20 dB and design impedance of 600Ω

UNIT IV:DC. MACHINES

Short Answer Questions:

1. What is a Machine?
2. What is a Generator?
3. Classify different types of Generators.
4. Classify different types of DC Generators.
5. What is a Motor?
6. Classify different types of Motors.
7. Classify different types of DC Motors.
8. State Fleming's right hand rule?
9. State Fleming's Left hand rule?
10. State various parts in a DC machine

Long Answer Questions:

1. Draw a detailed sketch of a d.c. machine and identify the different parts. Briefly explain the function of each major part?
2. a) Explain constructional features and working principle of d.c. generator?
b) State Fleming's right hand rule?
3. a) Derive the expression of induced e.m.f. of d.c. generator?
b) A 4 pole, lap wound d.c. generator has a useful flux of 0.07 wb per pole. Calculate the generated e.m.f when it is rotated at a speed of 900 r.p.m with the help of prime mover.
armature consists of 440 number of conductors. Also calculate the generated e.m.f if lap wound armature is replaced by wave wound armature.
4. Explain the characteristics of DC generators
5. Differentiate between slip rings and commutator in a d.c. machine?
6. What are the main parts of a d.c. machine? State the function of each part with relevant figures.
7. a) Based on the type of excitation classify the d.c. generators?
b) A dynamo has a rated armature current of 250A.what is the current per path of the armature if the armature winding is lap or wave connected? The machine has 12 poles.
8. What is the construction and working principle of D.C motor?
9. Explain the different types of D.C motors and their characteristics?
10. Derive an expression for the speed of a D.C. motor in terms of back emf and flux per pole.
11. Explain speed current and speed torque characteristics of D.C. shunt motor.
12. What are the applications of a D.C motor and D.C generator?
13. Derive the expressions for various torques developed in a dc motor?
14. Explain the different methods of speed control of a dc shunt motor
15. What are the different losses occurring in a d c machine? Derive the condition for maximum efficiency of a dc motor
16. Explain the following
a. Swinburne's test
b. Brake test

UNIT V:TRANSFORMERS \& THEIR APPLICATIONS

Short Answer Questions:

1.Define tansformer.
2.Why is the rating of transformer in KVA and why not in KW?
3.Classify various types of transformers depending on their construction
4. Classify various types of transformers depending on their operation.
5. What is the construction and working principle of Transformer?

Long Answer Questions:

1. What is the construction and working principle of Transformer?
2. Derive an e.m.f. equation of a single phase transformer. The maximum flux density in the core of 250/3000 volts, 50 Hz single phase transformer is 1.2 webers per square meter. If the emf per turn is 8 volts determine primary and secondary turns and area of the core.
3. The primary winding of a 50 Hz single phase transformer has 480 turns and fed from 6400 v supply. The secondary winding has 20 turns. Find the peak value of flux in the core and the secondary voltage.
4. Derive an expression for voltage per turn of a transformer.
5. What are the different losses occurring in a transformer on load? How can these losses be determined experimentally?
6. Define the voltage regulation of a transformer. Deduce the expressions for the voltage regulation and the conditions for maximum voltage and zero voltage regulations.
7. The number of turns on the primary and secondary windings of a single phase transformer are 350 and 35 respectively. If the primary is connected to a $2.2 \mathrm{kV}, 50 \mathrm{~Hz}$ supply, determine the secondary voltage.
8. Draw the phasor diagrams of a single phase transformer for the following load power factors
a. Leading
b. Leading
c. Unity
9. Draw the equivalent circuits of a single phase transformer referred to primary as well as secondary
10. Explain double field revolving theory
11. Explain why a single phase motor is not self starting?
12. Explain the following with phasor diagrams
a. Capacitor start and run motor
b. Shaded pole motor
c. Synchro's
d. Stepper motor
e. A C tachometers
f. Servomotors

18.Assignment topics

UNIT I:TRANSIENT ANALYSIS

1. Derive the expression for transient response of a driven series RLC circuit for DC excitation. State different types of roots possible and write appropriate solution for the roots.
2. Define the following terms.
e. Critical Resistance (R_{c})
f. Damping Ratio
g. Natural Frequency $\left(\omega_{n}\right)$
h. Damped Frequency $\left(\omega_{d}\right)$
3. A DC voltage of 20 V is applied in a series RL circuit, where $R=5 \Omega$ and $L=10 \mathrm{H}$, Find
a) Time Constant
b) Max Value of Stored Energy.
4. Switch is closed at $t=0$, with the capacitor uncharged. Find the values of $\mathrm{i}, \frac{d i}{d t}, \frac{d^{2} i}{d t}$ at

$$
\mathrm{t}=0^{+}
$$

5.. Switch is closed at $t=0$, Assume initial current of inductor to be zero. Find the values of i, $\frac{d i}{d t}, \frac{d^{2} i}{d t}$ at $\mathrm{t}=0^{+}$.

UNIT - II TWO PORT NETWORK PARAMETERS

1. Obtain the expression for y-parameters in terms of transmission parameters.
(Nov./Dec-2004, Set - 1, May/June-2004, Set - 4)
2. Find the π - equivalent circuit for the following two port network.
(May-2005, Set - 1, 8 Marks)

3. Find z-parameters of V_{1}
in the figure.
(Aug.-2006, Set - 4, June- 1

4. Determine the z-parameters of the network shown in the figure.
(June-2006, Set-1, 8 Marks)

(ii) Equivalent π network.

UNIT III:FILTERS \& ATTENUATORS

1. Design a band elimination filter having a design impedance of 600Ω and cut - off frequencies $f_{1}=2 \mathrm{KHz}$ and $\mathrm{f}_{2}=6 \mathrm{KHZ}$. [15]
2. Explain T - type attenuator and also design a T - type attenuator to give an attenuation of 60 dB and to work in a line of 500Ω impedance. [15]
3. Design a m - derived high pass filter with a cut - off frequency of 10 KHz ; design impedance of 5Ω and $m=0.4$. [15]
4. Explain the lattice attenuator and also design a lattice attenuator to have a characteristic impedance of 800Ω and attenuation of 20 dB . [15]

UNIT IV:DC. MACHINES

1. Draw a detailed sketch of a d.c. machine and identify the different parts. Briefly explain the function of each major part?
2. a) Explain constructional features and working principle of d.c. generator?
b) State Fleming's right hand rule?
3. a) Derive the expression of induced e.m.f. of d.c. generator?
b) A 4 pole, lap wound d.c. generator has a useful flux of 0.07 wb per pole. Calculate the generated e.m.f when it is rotated at a speed of $900 \mathrm{r} . \mathrm{p} . \mathrm{m}$ with the help of prime mover. armature consists of 440 number of conductors. Also calculate the generated e.m.f if lap wound armature is replaced by wave wound armature.
4. What is the construction and working principle of D.C motor?
5. Explain the different types of D.C motors and their characteristics?
6. Derive an expression for the speed of a D.C. motor in terms of back emf and flux per pole.

UNIT V:TRANSFORMERS \& THEIR APPLICATIONS

1. What is the construction and working principle of Transformer?
2. Derive an e.m.f. equation of a single phase transformer. The maximum flux density in the core of $250 / 3000$ volts, 50 Hz single phase transformer is 1.2 webers per square meter. If the emf per turn is 8 volts determine primary and secondary turns and area of the core.
3. The primary winding of a 50 Hz single phase transformer has 480 turns and fed from 6400 v supply. The secondary winding has 20 turns. Find the peak value of flux in the core and the secondary voltage.
4. Derive an expression for voltage per turn of a transformer.
5. What are the different losses occurring in a transformer on load? How can these losses be determined experimentally?

UNIT I:TRANSIENT ANALYSIS

1. Laplace transform analysis gives
a. time domain response only
b. Frequency domain response only.
c. Both a and boptions.
2. Match the following :
$\begin{array}{ll}\text { (i) Undamped } & \text { a) } \xi=0\end{array}$
(ii) Under damped
b) $\xi=1$
(iii) Critically damped
c) $1<\xi<\infty$
(iv) Over damped
d) $0<\xi<1$
e) $1>\xi>\infty$
f) $\xi=\sqrt{ }-1$
3. Match the following:
(i) Critical Resistance $\left(R_{C}\right)$
a) $\frac{R}{2} \sqrt{C / L}$
(ii) Damping ratio (ξ)
b) $\omega_{n} \sqrt{1-\xi^{2}}$
(iii) Natural frequency $\left(\omega_{n}\right)$
c) $\frac{1}{L C}$
(iv) Damping frequency $\left(\omega_{d}\right)$
d) $2 \sqrt{L / C}$
e) $1 / R C$
f) $1 / \sqrt{L C}$
4. The time constant of below network is \qquad seconds.
5. Match the following
(i) Time const of series RL Circuit is
a) only memory (L, C) elements
(ii) Time const of series RC circuit is
b) only memoryless ${ }^{\circledR}$ elements
(iii) Transient response occur's in
c) RC
(iv) Inductor do not allow sudden
d) $\frac{1}{R C}$
(v) Capacitor do not allow sudden
e) changes in currents.
(vi) Capacitor do not allow sudden
f) changes in voltages
g) $\frac{L}{R}$
h) $\frac{R}{L}$

UNIT - II TWO PORT NETWORK PARAMETERS

1. An attenuator is a
(A) R's network. (B) RL network.
(C) RC network. (D) LC network.

Ans: A
2. For a two port reciprocal network, the three transmission parameters are given by $A=4$, $B=7$ and $C=5$. The value of D is equal to
(A) 8.5 (B) 9
(C) 9.5 (D) 8

Ans: B
3.A symmetrical T network has characteristic impedance Z and propagation constant ov .

Then the series element $Z 1$ and shunt element $Z 2$ are given by
(A) $Z=Z \sinh \gamma$ and $Z 2 Z \tanh \gamma$
(B) $Z=Z \sinh \gamma$ and $Z 2 Z \tanh 2 \gamma$
(C) $Z 2 Z \tan 2 \gamma$ and $Z=Z \sinh \gamma$
(D) $Z Z \tanh 2 \gamma$ and $Z=2 Z \sinh \psi$

Ans: C
4 For a linear passive bilateral network
(A) h21 = h12
(B) h21 = -h12
(C) $\mathrm{h} 12=\mathrm{g} 12$
(D) h12 $=-\mathrm{g} 12$

Ans: B
5. For a symmetrical network
(A) $\mathrm{Z11}=\mathrm{Z} 22$
(B) $\mathrm{Z12}=\mathrm{Z} 21$
(C) $\mathrm{Z} 11=\mathrm{Z} 22$ and $\mathrm{Z} 12=\mathrm{Z} 21$
(D) $\mathrm{Z} 11 \times \mathrm{Z} 22-\mathrm{Z12}{ }^{2}=0$

Ans: C
6. Bridged T network can be used as:
(A) Attenuator (B) Low pass filter
(C) High pass filter (D) Band pass filter

Ans: A

UNIT III:FILTERS \& ATTENUATORS

1.The Characteristic Impedance of a low pass filter in attenuation Band is
(A) Purely imaginary. (B) Zero.
(C) Complex quantity. (D) Real value.

Ans: A
2. The purpose of an Attenuator is to:
(A) increase signal strength. (B) provide impedance matching.
(C) decrease reflections. (D) decrease value of signal strength.

Ans: D
3. In a transmission line terminated by characteristic impedance, Zo
(A) There is no reflection of the incident wave.
(B) The reflection is maximum due to termination.
(C) There are a large number of maximum and minimum on the line.
(D) The incident current is zero for any applied signal.

Ans: A
4. All pass filter
(A) passes whole of the audio band.
(B) passes whole of the radio band.
(C) passes all frequencies with very low attenuation.
(D) passes all frequencies without attenuation but phase is changed.

Ans: D
5. If ' ' α is attenuation in nepers then
(A) attenuation in $\mathrm{dB}=\alpha / 0.8686$. (B) attenuation in $\mathrm{dB}=8.686 \alpha$.
(C) attenuation in $\mathrm{dB}=0.1 \alpha$. (D) attenuation in $\mathrm{dB}=0.01 \alpha$.

Ans: B
6. For an m-derived high pass filter, the cut off frequency is 4 KHz and the filter has an infinite attenuation at 3.6 KHz , the value of m is
(A) 0.436 (B) 4.36
(C) 0.34 (D) 0.6

Ans: A
7. In a variable bridged T-attenuator, with , $R A=$ Ro zero $d B$ attenuation can be obtained if bridge arm RB and shunt arm R are set as C
(A) $R B=, 0 R C=\infty(B) 0 R B=\infty, R C=$
(C) $R B=, R R C=\infty$ (D) $R B=, O R C=R$

Ans: A
8.A constant K band-pass filter has pass-band from 1000 to 4000 Hz . The resonance frequency of shunt and series arm is a
(A) 2500 Hz . (B) 500 Hz .
(C) 2000 Hz . (D) 3000 Hz .

Ans: C
9.A constant k low pass T-section filter has $Z 0=600 \Omega$ at zero frequency. At $f=f c$ the characteristic impedance is
(A) 600Ω
(B) 0
(C) ∞
(D) More than 600Ω

Ans: B
10. In m-derived terminating half sections, $\mathrm{m}=$
(A) 0.1 (B) 0.3
(C) 0.6 (D) 0.95

Ans: C
11. In the m-derived HPF, the resonant frequency is to be chosen so that it is
(A) above the cut-off frequency. (B) Below the cut-off frequency.
(C) equal to the cut-off frequency. (D) None of these.
12. An A transmission line works as an
(A) Attenuator (B) LPF
(C) HPF (D) Neither of the above

Ans: B

UNIT IV:DC MACHINES

1. A machine that converts mechanical energy into electrical energy of $d . c$ in nature is called
a) a.c motor
b) d.c. generator
c) a.c generator
d) d.c motor
2. The basic principle of working of a d.c. generator is by
a) Faradays law of electromagnetic induction
b) Maxwells cork screw rule
c) Flemings left hand rule
d) Amperes thumb rule
3. The basic essential parts of electrical generator are
a) Magnetic field and insulator
b) Electric field and insulator
c) Magnetic field and conductor
d) Electric field and conductor
4. The direction of induced e.m.f in a generator depends upon the direction of
a) Electric field
b) Magnetic field
c) motion of the conductor
d) none of the above
5. The direction of the motion of conductor in generator is given by
a) Flemings left hand rule
b) Flemings right hand rule
c) Amperes thumb rule
d) Maxwells cork screw rule
6. The armature of the d.c .generator is made up of cast iron or cast steel because
a) it has to provide low reluctance path
b) it has to provide high reluctance path
c) both
d) none
7. Which of the following is applicable to a d.c. machine with respect to the field windings?
a) It is always placed on stator
b) It is always placed on rotor
c) Sometimes on rotor
d) May be on rotor or stator.
8. The armature core of d.c. machine is made up of \qquad
a) solid aluminum
b) laminated aluminum
c) solid steel
d) laminated steel.
9. Which of the following is function of the brushes in case of d.c. machine?
a) To convert a.c. to d.c.
b) To convert to d.c. to a.c.
c) To collect current and deliver to the load
d) May be conversion for a.c. to d.c. or d.c. to a.c.
10. The number of commutator segments must be \qquad
a) twice the number of armature coils
b) equal to the number of armature coils
c) half the number of armature coils
d) thrice the number of armature coils.
11. The direction of generated e.m.f. in d.c. generator is determined by \qquad
a) Lenz's law
b) Faraday's law
c) Fleming's left hand rule
d) Fleming's right hand rule.
12. Which of the following gives the expression for the generated voltage in a d.c. generator?
a) $4.44 \phi \mathrm{Z} \mathrm{NP}$
b) $4.44 / \phi \mathrm{Z} \mathrm{NP}$
c) ϕ Z NP / A 60
d) zero.
13. Which of the following forms of energy conversion take place in an electrical energy system?
a) Mechanical to electrical
b) Electrical to mechanical
c) Mechanical to thermal
d) Thermal to Mechanical
14. Which of the following is a function of the commutator in d.c. generator?
a) to act as a rectifier
b) to act as a inverter
c) to act as a junction box per connection the armature winding ends.
d) to act as a chopper.
15. A shunt generator cannot excite, if the field resistance is \qquad critical value.
a) less than
b) more than
c) equal to
d) none
16. Lamination are used in d.c. machine to reduce
a) eddy current losses
b) Hysteresis losses
c) copper losses
d) none
17. In a cumulative compound generator flux produced by shunt field winding and series field winding each other
a) aids
b) opposes
c) nullifies
d) none
18. In a differential compound generator flux produced by shunt field winding and series field winding \qquad each other
a) aids
b) opposes
c) nullifies
d) none
19. The field winding is also called as
a) exciting winding
b) armature winding
c) both
d) none
20. Brushes are normally made up of soft material like
a) carbon
b) aluminum
c) cast steel
d) cast iron
21. A dec motor is used to. \qquad
a) generate power
b) change mechanical energy to electrical energy
c) change electrical energy to mechanical energy
d) increase energy put into it
22. A dec motor is still used in industrial applications because it.....
a) is cheap
b) is simple in construction
c) provides fine speed control
d) none of the above
23. Carbon brushes are preferable to Copper brushes because....
a) they have longer life
b) they reduce armature reaction
c) they have lower resistance
d) they reduce sparking
24. The field poles and armature of d.c machine are laminated to...
a) reduce the weight of the machine
b) decreases the speed
c) reduce eddy currents
d) reduce armature reaction
25. The back e.m.f in a dec motor.
a) oppose the applied voltage
b) aids the applied voltage
c) adds the armature current
d) none of the above
26. The value of back e.m.f $\left(E_{b}\right)$ in a d.c motor is maximum at.....
a) no load
b) full load
c) half full load
d) none of the above
27. The motor is equation is given by......
a) $V=E_{b}-I_{a} R_{a}$
b) $V=E_{b}+I_{a} R_{a}$
c) $E_{b}=I_{a} R_{a}-V$
d) None of the above
28. The mechanical power developed in a d.c motor is maximum when back e.m.f(E_{b}) is equal to. \qquad the applied voltage (V)
a) twice
b) half
c) one-third
d) none of the above
29. When the speed of a d.c motor increases its armature current....
a) increases b) decreases
c) remains constant
d) none of the above
30. The amount of emf of a shunt motor will increase when.....
a) the load increase
b) the field is weakend
c) the field is strengthened
d) none of the above
31. The speed of d.c motor is \qquad
a) directly proportional to flux per pole
b) inversely proportional to flux per pole
c) inversely proportional to applied voltage
d) none of the above
32. The torque developed by a d.c motor is directly proportional to.....
a) flux per pole * armature current
b) armature resistance * applied voltage
c) armature resistance * armature current
d) none of the above
33. Armature reaction in d.c motor is increased \qquad
a) when the armature current increases
b) when the armature current decreases
c) when the field current increases
d) by interpoles
34. W.r.t the direction of rotation interpoles on a d.c motor must have the same polarity as the main poles \qquad
a) ahead of them
b) behind of them
c) in between them
d) none of them
35. In a d.c motor the brushes shifted from the mechanical neutral plain in a direction opposite to the rotation......
a) decrease speed
b) increase speed
c) reduce sparking
d) produce flat characteristics
36. In very large d.c motors with severe heavy duty armature reaction effects are corrected by
a) using interpoles only
b) using compensatory windings in addition to interpoles
c) shifting the brush position
d) none of the above
37. The speed of a \qquad motor is practically constant
a) cumulatively compounded
b) series
c) differentially compoundedd) shunt
38. In DC shunt motors as load is reduced
a) The speed will increase abruptly
b) The speed will increase in proportion to reduction in load
c) The speed will remain almost constant
d) The speed will reduce
39. What will happen if the back emf of a DC motor vanishes
a) The motor will stop
b) The motor will continue to run
c) The armature may burn
d) The motor will run noisy
40. Small DC motors up to 5HP usually have
a) 2 poles
b) 4 poles
c) 6 poles
d) 8 poles

UNIT V:TRANSFORMERS \& THEIR APPLICATIONS

1. A transformer will work on \qquad
a) a.c only
b) d.c only
c) a.c as well as d.c
d) none of the above
2. The primary and secondary of a transformer are \qquad Coupled
a) electrically
b)magnetically
c) electrically \& magnetically
d) none of the above
3. A transformer is an efficient device because it \qquad
a) is a static device
b) uses inductive coupling
c) Uses capacitve coupling
d) Uses electric coupling
4. The voltage per turn of the primary of transformer is. \qquad The voltage for turn of the secondary
a) more than
b) less than
c) the same as
d) none of the above
5. The iron core is used to \qquad of the transformer
a) increase the weight
b) provide tight magnetic coupling
c) reduce core losses
d) none of the above
6. The maximum flux produced in the core of a transformer
a) directly proportional to supply frequency
b) inversely proportional to supply frequency
c) inversely proportional to primary voltage
d) none of the above
7. When the primary of a transformer is connected to a d.c supply \qquad
a) primary draws small current
b) primary leakage reactance is increased
c) core losses are increased
d) primary may burn out
8. An ideal transformer is one which. \qquad
a) has no losses and leakage reactance
b) does not work
c) as same number of primary and secondary turns
d) none of the above
9. A transformer has an efficiency of 80% and works at $100 \mathrm{~V}, 4 \mathrm{KW}$ if the secondary voltage 240 V , find the primary current
(a) 40 A
(b) 30 A
(c) 20 A
(d) 10 A
10. In the above question, what is the secondary current
a) 12.5 A
b) 9.42 A
c) 11.56 A
d) 13.33 A
11. A $2000 / 200 \mathrm{~V}, 20 \mathrm{KVA}$ ideal transformer has 66 turns in the secondary the no. of primary turns is. \qquad
a) 440
b) 660
c) 550
d) 330
12. The no-load ratio of a 50 Hz single phase transformer is $6000 / 250 \mathrm{~V}$ the maximum flux in the core is 0.06 Wb . What is the no of primary turns.
a) 450
b) 900
c) 350
d) 210
13. In the above question what is the no. of secondary turns?
a) 38
b) 19
c) 76
d) 104
14. A 20 turn iron cored indicator is connected to a $100 \mathrm{~V}, 58 \mathrm{~Hz}$ source. The maximum flux density in the core is $1 \mathrm{~Wb} / \mathrm{m}^{\wedge} 2$. The cross sectional area of the core is. \qquad ...
a) $0.152 \mathrm{~m}^{2}$
b) $0.345 \mathrm{~m}^{2}$
c) $0.056 \mathrm{~m}^{2}$
d) $0.0225 \mathrm{~m}^{2}$
15. Calculate the core area required for a $1600 \mathrm{kVA}, 6600 / 440 \mathrm{~V}, 50 \mathrm{~Hz}$ single phase core type power transformer. Assume a maximum flux density of $1.2 \mathrm{WB} / \mathrm{m}^{\wedge} 2$ and induced voltage per turn of 30 V.
a) $975 \mathrm{~cm}^{2}$
b) $1100 \mathrm{~cm}^{2}$
c) $1125 \mathrm{~cm}^{2}$
d) $1224 \mathrm{~cm}^{2}$
16. An ideal transformer
a) Has no losses and magnetic leakage
b) Has interleaved primary and secondary windings
c) Has common core for its primary and secondary windings
d) Has core of stain less steel and windings of pure copper metal
17. The phase relationship between primary and secondary terminal voltage of a Transformer is
a) Primary voltage is leading the secondary voltage by 90°
b) Secondary voltage is leading the primary voltage by 90°
c) 180° out of phase
d) In the same phase
18. If an ammeter in the secondary of a $100 / 10 \mathrm{~V}$ transformer reads 10 A . What would be the current in the primary
a) 1 A
b) 2 A
c) 10 A
d) 100 A
19. The \%age voltage regulation of the Transformer is given by
a) $\frac{E_{2}-V_{2}}{V_{2}}$
b) $\frac{E_{2}-V_{2}}{E_{2}}$
c) $\frac{V_{2}-E_{2}}{E_{2}} \times 100$
d) $\frac{E_{2}-V_{2}}{E_{2}} \times 100$
20. The full load rating of a Transformer is 90 kW at power factor of 0.9 its KVA rating would be
21. The stator of a 3-phase induction motor produces \qquad magnetic field
a) steady
b)rotating
c) alternating
d) None of the above
22. An induction motor is preferred to a d.c motor because it \qquad
a) Provides high starting torque
b) Provides smooth speed control
c) has simple and rugged construction
d)none of the above
23. A 3 -phase induction motor is \qquad
a) Essentially a constant speed
b) a variable speed motor
c) Very costly
d) Not easily maintainable
24. If the frequency of 3 - phase supply to the stator of a 3-phase induction motor is increased, then synchronous speed \qquad
a) is decreased
b) is increased
c) Remains un changed
d) None of the above
25. The synchronous speed of a 3 -phase induction motor having 20 -poles and frequency 50 Hz is
a) 600 rpm
b) 100 rpm
c) 1200 rpm
d) 300 rpm
26. The relation among synchronous speed $\left(\mathrm{N}_{\mathrm{s}}\right)$ rotor speed (N) and slip (S) is \qquad
a) $\mathrm{N}=\mathrm{N}_{\mathrm{S}}(\mathrm{S}-1)$
b) $N=N_{S}(1-S)$
c) $\mathrm{N}=\mathrm{N}_{\mathrm{s}}(\mathrm{S}+1)$
d) $N=N_{S} S$
27. When the rotor of a 3 -phase induction motor is blocked, the slip \qquad
a) 0
b) 0.5
c). 1
d) 1
28. A 4-pole induction motor has a synchronous speed of 1500 r.p.m then supply frequency
a) 50 Hz
b) 25 Hz
c) 60 Hz
d)none of the above
29. The rotor winding of a 3-phase wound rotor induction motor is generally \qquad connected
a) Star
b) delta
c) partly star and partly delta
d) none of the above
30. A wound rotor motor is mainly used in applications where \qquad
a) High starting torque
b) speed control is required
c) less costly motor is not required
d)high rotor resistances required
31. If the slip of a 3-phase induction motor increases, the p.f of the circuit
a) is increased
b) is decreased
c) remains unchanged d) none of the above
32. Which of the following is drawback of the Induction Motor
a) cheap in cost
b) moderate efficiency
c) self starting
d) speed control is complex
33. The frequency of induced e.m.f in case of rotor
a) sf
b) f / s
c) $\mathrm{f}+\mathrm{s}$
d) f-s
34. The copper losses in the rotor of induction motor
a) result in the eddy currents
b) are lost as heat
c) result in noise
d) are always negligible
35. The ratio of resistance to reactance for induction motor is
a) high
b) unity
c) less than unity
d) negligible
36. Power factor of induction motor during no load condition is
a) low
b) high
c) zero
d) unity
37. Which of the following is a rotational transformer
a) transformer
b) D.C machine
c) Induction motor
d) synchronous machine
38. An induction motor is
a) non self starting
b) self starting with low torque
c) self starting with high torque
d) self starting with zero torque
39. At low slip the torque slip characteristic is
a) $\mathrm{T} \propto \mathrm{S}$
b) $\mathrm{T} \propto S^{2}$
c) $T \propto \frac{1}{S^{2}}$
d) $T \propto \frac{1}{S}$
40. The relationship between rotor frequency f_{2}, slip s and stator frequency f_{1} is given by
a) $f_{2}=S f$
b) $f_{2}=\sqrt{S f}$
c) $f_{2}=f / S$
d) $f_{2}=(1-S) f$

20. Tutorial problems

UNIT I:TRANSIENT ANALYSIS

1.. Switch is closed at $t=0$, Assume initial current of inductor to be zero. Find the values of i, $\frac{d i}{d t}, \frac{d^{2} i}{d t}$ at $\mathrm{t}=0^{+}$.

2. In the circuit shown, the relay is adjusted to operate at a current of 5 A at $\mathrm{t}=0$, switch is closed, The relay is found to operate at $\mathrm{t}=0.347 \mathrm{sec}$. Find of inductance.

3.a.In a series RL circuit shown in fig. the switch is in position 1 for long time to establish a steady state and then moved to position 2 at $t=0$. Find the $i(t)$ for $t=0$.

c. A series RL circuit, with $R=30 \Omega, L=15 H, V=60(d c)$, applied at $t=0$, determine $\mathrm{I}, \mathrm{V}_{\mathrm{R}}, \mathrm{V}_{\mathrm{L}}$ at transient state.

UNIT - II TWO PORT NETWORK PARAMETERS

1. Express the elements of a T-network in terms of the $A B C D$ parameters.
2. Find z-parameters of the network shown in the figure.
(Aug.-2006, Set - 4, June-2006, Set - 2, 8 Marks)

3. Determine the z-parameters of the network shown in the figure.
(June-2006, Set-1, 8 Marks)
4. Determine
the network shown parameters of in the figure.
(Aug.-2006, Set - 3, June-2006, Set - 4, 8 Marks)
5. The y-parameters network are as $Y_{11}=0.6 \mathrm{~s}, \quad Y_{12}=-$
1.2s.

Determine
(i) $A B C D$ parameters,
(ii) Equivalent π network.
(June-2006, Set - 1, 8 Marks)
6. z - parameters for a two port network are given as follows $Z_{11}=25 \Omega, Z_{12}=Z_{21}=20 \Omega$,
$Z_{22}=50 \Omega$. Find the equivalent T network.
(June-2006, Set - 3, 8 Marks)
7. Obtain y-parameters of the following bridged T network.
(June-2004, Set - 4, Dec.-2004, Set - 1, 8 Marks)

UNIT III:FILTERS \& ATTENUATORS

1. What is a constant $-K$ low pass filter, derive its characteristics impedance.
2. Explain π - type attenuator and also design it to give 20 db attenuation and to have characteristic impedance of 100Ω.
3. Design a band stop, constant - K filter with cut off frequencies of 4 KHz and 10 KHz and nominal characteristic impedance of 500Ω.
4.a) Explain about a symmetrical π - attenuator.
b) Design a symmetrical $\pi-$ attenuator to provide attenuation of 20 dB and design impedance of and design impedance of 400Ω
4. Design a band pass, constant - K filter with cut - off frequency of 4 KHz and nominal characteristic impedance of 500Ω.
6.a) Explain Symmetrical Bridge T - type attenuator.
b) Design a symmetrical bridge T - attenuator with attenuation of 20 dB and design impedance of 600Ω

UNIT IV:DC. MACHINES

1. Explain the characteristics of DC generators
2. Differentiate between slip rings and commutator in a d.c. machine?
3. What are the main parts of a d.c. machine? State the function of each part with relevant figures.
4. a) Based on the type of excitation classify the d.c. generators?
b) A dynamo has a rated armature current of 250A.what is the current per path of the armature if the armature winding is lap or wave connected? The machine has 12 poles.
5. Derive the expressions for various torques developed in a dc motor?
6. Explain the different methods of speed control of a dc shunt motor
7. What are the different losses occurring in a d c machine? Derive the condition for maximum efficiency of a dc motor
8. Explain the following
a. Swinburne's test
b. Brake test

UNIT V:TRANSFORMERS \& THEIR APPLICATIONS

1. Derive an e.m.f. equation of a single phase transformer. The maximum flux density in the core of $250 / 3000$ volts, 50 Hz single phase transformer is 1.2 webers per square meter. If the emf per turn is 8 volts determine primary and secondary turns and area of the core.
2. The primary winding of a 50 Hz single phase transformer has 480 turns and fed from 6400 v supply. The secondary winding has 20 turns. Find the peak value of flux in the core and the secondary voltage.
3 The number of turns on the primary and secondary windings of a single phase transformer are 350 and 35 respectively. If the primary is connected to a $2.2 \mathrm{kV}, 50 \mathrm{~Hz}$ supply, determine the secondary voltage.
3. Draw the phasor diagrams of a single phase transformer for the following load power factors
a. Leading
b. Leading
c. Unity
4. Draw the equivalent circuits of a single phase transformer referred to primary as well as secondary
5. a. Capacitor start and run motor
b. Shaded pole motor
c. Synchro's
d. Stepper motor
e. A C tachometers
f. Servomotors

21. Known gaps if any

NIL

22. Discussion questions

UNIT1:

1) Derive expression for transient response of a driven series RLC circuit for DC excitation.State different types of roots possible and write appropriate solution for the roots
2)What is time constant?Explain the significance of time constant in case of series RC circuit
3)Obtain transient response of undriven or sourse free series RC CIRCUIT

UNIT 2:

1) Obtain the expression for y-parameters in terms of transmission parameters.
2) Define h parameters and draw the equivalent circuit for the same
3) Derive condition of symmetry for ABCD parameters

UNIT 3:

1) Explain about a symmetrical π - attenuator
2) Design a band stop, constant - K filter with cut off frequencies of 4 KHz and 10 KHz and nominal characteristic impedance of 500Ω. [15]
3) Explain Symmetrical Bridge T - type attenuator.

UNIT 4:
1)Derive the expressions for various torques developed in a dc motor?
2) Explain constructional features and working principle of d.c. generator?

UNIT5:

1) Draw the equivalent circuits of a single phase transformer referred to primary as well secondary
2) Derive the expression for the induced emf of a transformer

23. References, Journals, websites and E-links

1Electric circuits- A.Chakrabarthy, Dhanipat Rai \& Sons.
2. Basic concepts of Electrical Engineering- PS Subramanyam, BS Publications
3.Engineering Circuit Analysis - W.H.Hayt and J. E. Kermmerly and S. M. Durbin 6 ed., 2008 TMH.
4.Basic Electrical Engineering- S.N.Singh, PHI.
6. Electrical Circuits- David A.Bell, Oxford University Press.
7. Electric Circuit Analysis- K.S.Suresh Kumar, Pearson Education.
8. Electrical Circuits- N.Sreenivasulu.

24:Quality sheets:

To be attached

25.Student List

To be attached
26. GroupWise Student List for discussion topics

To be attached

